Skip to main content
Log in

Oxygen Reduction on Structurally Well Defined, Bimetallic PtRu Surfaces: Monolayer PtxRu1−x/Ru(0001) Surface Alloys Versus Pt Film Covered Ru(0001)

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The electrocatalytic activity of different, structurally well defined bimetallic PtRu surfaces in the oxygen reduction reaction was investigated by a combination of scanning tunnelling microscopy and electrochemical measurements performed under controlled mass transport conditions in a flow cell. We compare the effect of pseudomorphic Pt cover layers, mimicking the situation in a core–shell Pt/Ru nanoparticle, and of mixed PtxRu1−x monolayer surface alloys, reflecting the situation in an alloyed nanoparticle. The results unambiguously demonstrate that these bimetallic surfaces can reach activities well in excess of that of Pt(111), both for the film surfaces and the surface alloys, by optimizing the Pt surface content (surface alloys) or the Pt film thickness (film surfaces). The results are compared with simulated kinetic current–potential profiles based on existent density functional theory calculations (Greeley and Nørskov, J Phys Chem C 113:4932, 2009; Lischka et al., Electrochim Acta 52:2219, 2007) revealing very good agreement in trends. Potential and limits of this approach are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Damjanovic A (1969) Mechanistic analysis of oxygen electrode reactions. In: Bockris JO, Conway BE (eds) Modern aspects of electrochemistry. Plenum Press, New York, pp 369–483

    Google Scholar 

  2. Markovic NM, Schmidt TJ, Stamenkovic V, Ross PN (2001) Fuel Cells 1:105–116

    Article  CAS  Google Scholar 

  3. Paulus UA, Schmidt TJ HA, Gasteiger BehmRJ (2001) J Electroanal Chem 495:134–145

    Article  CAS  Google Scholar 

  4. Gattrell M, MacDougall B (2003) Reaction mechanism of the O2 reduction/evolution reaction. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells, vol 2., ElectrocatalysisWiley, Chichester, pp 443–464

    Google Scholar 

  5. Song C, Zhang J (2008) Electrocatalytic oxygen reduction reaction. In: Zhang J (ed) PEM fuel cell electrocatalysts and catalyst layers—fundamentals and applications. Springer, New York, pp 89–134

    Chapter  Google Scholar 

  6. Gottesfeld S (2009) Electrocatalysis of oxygen reduction in polymer electrolyte fuel cells: a brief history and a critical examination of present theory and diagnostics. In: Koper MTM (ed) Fuel cell catalysis: a surface science approach. Wiley, Chichester, pp 1–30

    Chapter  Google Scholar 

  7. Mukerjee S, Srinivasan R, Soriaga MP, McBreen J (1995) J Electrochem Soc 142:1409–1422

    Article  CAS  Google Scholar 

  8. Toda T, Igarashi H, Uchida H, Watanabe M (1999) J Electrochem Soc 146:3750–3756

    Article  CAS  Google Scholar 

  9. Stamenkovic V, Schmidt TJ, Ross PN, Markovic NM (2002) J Phys Chem B 106:11970–11979

    Article  CAS  Google Scholar 

  10. Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Nørskov JK (2006) Angew Chem Int Ed 45:2897–2901

    Article  CAS  Google Scholar 

  11. Mani P, Srivastava R, Strasser P (2008) J Phys Chem C 112:2770–2778

    Article  CAS  Google Scholar 

  12. Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Nørskov JK (2009) Nat Chem 1:552–556

    Article  CAS  Google Scholar 

  13. Strasser P, Kohl S, Anniyev V, Greeley J, More K, Yu C, Liu Z, Kaya S, Ogasawara H, Toney MF, Nilsson A (2010) Nat Chem 2:454–460

    Article  CAS  Google Scholar 

  14. Sasaki K, Kuttiyiel K, Su D, Adzic RR (2011) Electrocatalysis 2:134–140

    Article  CAS  Google Scholar 

  15. Hasché F, Oezaslan M, Strasser P (2012) J Electrochem Soc 159:B25–B34

    Article  Google Scholar 

  16. Rossmeisl J, Karlberg G, Jaramillo T, Nørskov JK (2008) Faraday Discuss 140:337–346

    Article  CAS  Google Scholar 

  17. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) J Phys Chem B 108:17886–17892

    Article  Google Scholar 

  18. Rossmeisl J, Logadottir A, Nørskov JK (2005) Chem Phys 319:178–184

    Article  CAS  Google Scholar 

  19. Greeley J, Nørskov JK (2009) J Phys Chem C 113:4932–4939

    Article  CAS  Google Scholar 

  20. Trasatti S (2003) Adsorption–volcano curve. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells, vol 2., ElectrocatalysisWiley, Chichester, pp 88–92

    Google Scholar 

  21. Petry OA, Podlovchenko BI, Frumkin AN, Lal H (1965) J Electroanal Chem 10:253–269

    CAS  Google Scholar 

  22. Watanabe M, Motoo S (1975) J Electroanal Chem 60:267–273

    Article  CAS  Google Scholar 

  23. Watanabe M, Motoo S (1975) J Electroanal Chem 60:275–283

    Article  CAS  Google Scholar 

  24. Petrini D, Larsson K (2007) J Phys Chem C 111:795–801

    Article  CAS  Google Scholar 

  25. Stamenkovic V, Grgur BN, Ross PN, Markovic NM (2005) J Electrochem Soc 152:A277–A282

    Article  CAS  Google Scholar 

  26. Zhang J, Vukmirovic MB, Mavrikakis M, Adzic RR (2005) Angew Chem Int Ed 44:2132–2135

    Article  CAS  Google Scholar 

  27. Inoue H, Brankovic SR, Wang JX, Adzic R (2002) Electrochim Acta 47:3777–3785

    Article  CAS  Google Scholar 

  28. Buatier de Mongeot F, Scherer M, Gleich B, Kopatzki E, Behm RJ (1998) Surf Sci 411:249–262

    Article  CAS  Google Scholar 

  29. Diemant T, Hager T, Hoster HE, Rauscher H, Behm RJ (2003) Surf Sci 541:137–146

    Article  CAS  Google Scholar 

  30. Schlapka A, Lischka M, Gross A, Käsberger U, Jakob P (2003) Phys Rev Lett 91:016101-1–016101-4

    Article  Google Scholar 

  31. Jakob P, Schlapka A (2007) Surf Sci 601:3556–3568

    Article  CAS  Google Scholar 

  32. Hoster HE, Alves OB, Koper MTM (2010) ChemPhysChem 11:1518–1524

    Article  CAS  Google Scholar 

  33. Hartmann H, Diemant T, Bansmann J, Behm RJ (2012) Phys Chem Chem Phys 14:10919–10934

    Article  CAS  Google Scholar 

  34. Lischka M, Mosch C, Gross A (2007) Electrochim Acta 52:2219–2228

    Article  CAS  Google Scholar 

  35. Jakob P, Schlapka A, Gazdzicki P (2011) J Chem Phys 134:224707

    Article  Google Scholar 

  36. Rauscher H, Hager T, Diemant T, Hoster H, Buatier de Mongeot F, Behm RJ (2007) Surf Sci 601:4608–4619

    Article  CAS  Google Scholar 

  37. Diemant T, Rauscher H, Behm RJ (2008) J Phys Chem C 112:8381–8390

    Article  CAS  Google Scholar 

  38. Hoster HE, Janik MJ, Neurock M, Behm RJ (2010) Phys Chem Chem Phys 12:10388–10397

    Article  CAS  Google Scholar 

  39. Hoster HE, Bergbreiter A, Erne P, Hager T, Rauscher H, Behm RJ (2008) Phys Chem Chem Phys 10:3812–3823

    Article  CAS  Google Scholar 

  40. Hoster HE, Richter B, Behm RJ (2004) J Phys Chem B 108:14780–14788

    Article  CAS  Google Scholar 

  41. Hoster HE, Behm RJ (2009) The effect of structurally well-defined Pt modification on the electrochemical and electrocatalytic properties of Ru(0001) electrodes. In: Koper MTM (ed) Fuel cell catalysis: a surface science approach. Wiley, Chichester, p 465

    Chapter  Google Scholar 

  42. Brankovic SR, McBreen J, Adzic RR (2001) J Electroanal Chem 503:99–104

    Article  CAS  Google Scholar 

  43. Brankovic SR, Wang JX, Zhu Y, Sabatini Y, McBreen J, Adzic RR (2002) J Electroanal Chem 524–525:231–241

    Article  Google Scholar 

  44. Brankovic SR, Marinkovic NS, Wang JX, Adzic RR (2002) J Electroanal Chem 532:57–66

    Article  CAS  Google Scholar 

  45. Zhou W-P, Lewera A, Bagus PS, Wieckowski A (2007) J Phys Chem C 111:13490–13496

    Article  CAS  Google Scholar 

  46. Diemant T, Bergbreiter A, Bansmann J, Hoster HE, Behm RJ (2010) ChemPhysChem 11:3123–3132

    Article  CAS  Google Scholar 

  47. Wang JX, Markovic NM, Adzic RR (2004) J Phys Chem B 108:4127–4133

    Article  CAS  Google Scholar 

  48. Sabatier P (1911) Ber Dtsch Chem Ges 44:1984–2001

    Article  CAS  Google Scholar 

  49. Dahl S, Logadottir A, Jacobsen CJH, Nørskov JK (2002) Appl Catal A 222:19–29

    Article  Google Scholar 

  50. Logadottir A, Rod TH, Nørskov JK, Hammer B, Dahl S, Jacobsen CJH (2001) J Catal 197:229–231

    Article  CAS  Google Scholar 

  51. Jacobsen CJH, Dahl S, Boisen A, Clausen BS, Topsoe H, Logadottir A, Nørskov JK (2002) J Catal 205:382–387

    Article  CAS  Google Scholar 

  52. Nørskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen CJH (2002) J Catal 209:275–278

    Article  Google Scholar 

  53. Bligaard T, Honkala K, Logadottir A, Nørskov JK, Dahl S, Jacobsen CJH (2003) J Phys Chem B 107:9325–9331

    Article  CAS  Google Scholar 

  54. Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U (2005) J Electrochem Soc 152:J23–J26

    Article  Google Scholar 

  55. Andersson MP, Bligaard T, Kustov A, Larsen KE, Greeley J, Johannessen T, Christensen CH, Nørskov JK (2006) J Catal 239:501–506

    Article  CAS  Google Scholar 

  56. Hammer B, Nørskov JK (2000) Adv Catal 45:71–129

    CAS  Google Scholar 

  57. Mavrikakis M, Hammer B, Nørskov JK (1998) Phys Rev Lett 81:2819–2822

    Article  Google Scholar 

  58. Atkins P, de Paula J (2002) Physical chemistry, 7th edn. Oxford University Press, Oxford

    Google Scholar 

  59. Greeley J, Nørskov JK (2005) Surf Sci 592:104–111

    Article  CAS  Google Scholar 

  60. Stampfl C, Kreuzer HJ, Payne SH, Pfnür H, Scheffler M (1999) Phys Rev Lett 83:2993–2996

    Article  CAS  Google Scholar 

  61. Hoster HE (2012) Mater Res Soc Symp Proc. doi:10.1557/opl.2012.820

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft via Research Group 1376 (Be 1201/18-1). A.K.E. is grateful for a fellowship from the Fonds National de la Recherche Luxembourg (PHD09-13). We would like to thank Prof. A. Groß (Ulm University) for fruitful discussions. One of the authors (RJB) wishes to thank Prof. J.K. Nørskov for stimulating and fruitful discussions over many years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Behm.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 741 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brimaud, S., Engstfeld, A.K., Alves, O.B. et al. Oxygen Reduction on Structurally Well Defined, Bimetallic PtRu Surfaces: Monolayer PtxRu1−x/Ru(0001) Surface Alloys Versus Pt Film Covered Ru(0001). Top Catal 57, 222–235 (2014). https://doi.org/10.1007/s11244-013-0177-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0177-0

Keywords

Navigation