Skip to main content
Log in

Activity and Selectivity Trends in Synthesis Gas Conversion to Higher Alcohols

  • OriginalPaper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Production of higher alcohols directly from synthesis gas is an attractive chemical process due to the high value of alcohols as fuel blends and the numerous possibilities for production of synthesis gas. Despite years of research the industrial viability of such a process is severely limited due to lack of suitable catalysts. In this work we contribute to an understanding why it has been difficult to find transition-metal higher alcohol catalysts, and point to possible strategies for discovering new active and selective catalysts. Our analysis is based on extensive density functional theory calculations to determine the energetics of ethanol formation on a series of metal (211) surfaces. The energetic information is used to construct a mean-field micro-kinetic model for the formation of ethanol via CHx–CO coupling. The kinetic model is used along with a descriptor-based analysis to gain insight into the fundamental factors determining activity and selectivity on transition-metal surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Spath PL, Dayton DC (2003) Preliminary screening—technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas; NREL/TP-510-34929. Golden, National Renewable Energy Laboratory

    Google Scholar 

  2. Spivey JJ, Egbebi A (2007) Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas. Chem Soc Rev 36:1514–1528

    Article  CAS  Google Scholar 

  3. Subramani V, Gangwal SK (2008) A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol. Energy Fuels 22:814–839

    Article  CAS  Google Scholar 

  4. Surisetty VR, Dalai AK, Kozinski J (2011) Alcohols as alternative fuels: an overview. Appl Catal A 404:1–11

    CAS  Google Scholar 

  5. Nunan JG, Bogdan CE, Klier K, Smith KJ, Young C-W, Herman RG (1989) Higher alcohol and oxygenate synthesis over cesium-doped Cu/ZnO catalysts. J Catal 116:195–221

    Article  CAS  Google Scholar 

  6. Xu M, Iglesia E (1999) Carbon-carbon bond formation pathways in CO hydrogenation to higher alcohols. J Catal 188:125–131

    Article  CAS  Google Scholar 

  7. Gupta M, Smith ML, Spivey JJ (2011) Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on Cu-based catalysts. ACS Catal 1:641–656

    Article  CAS  Google Scholar 

  8. Matsuzaki T, Takeuchi K, Hanaoka TA, Arawaka H, Sugi Y (1993) Effect of transition metals on oxygenates formation from syngas over Co/SiO2. Appl Catal A 105:159–184

    Article  CAS  Google Scholar 

  9. Ichikawa M (1978) Catalytic synthesis of ethanol from CO and H2 under atmospheric pressure over pyrolysed rhodium carbonyl clusters on TiO2, ZrO2, and La2O3. J Chem Soc, Chem Commun 566–567

  10. Bhasin MM, Bartley WJ, Ellgen PC, Wilson TP (1978) Synthesis gas conversion over supported rhodium and rhodium-iron catalysts. J Catal 54:120–128

    Article  CAS  Google Scholar 

  11. Courty P, Durand D, Freund E, Sugier A (1982) C1–C6 alcohols from synthesis gas on copper–cobalt catalysts. J Mol Catal 17:241–254

    Article  CAS  Google Scholar 

  12. Subramanian N, Gao J, Mo X, Goodwin J, Torres W, Spivey JJ (2010) La and/or V oxide promoted Rh/SiO2 catalysts: effect of temperature, H2/CO ratio, space velocity, and pressure on ethanol selectivity from syngas. J Catal 262:204–209

    Article  Google Scholar 

  13. Murchison CB, Conway MM, Stevens RR, Quarderer GJ (1988) Mixed alcohols from syngas over moly catalysts. In: Ternan M (ed) Proceedings of the 9th international congress of catalysis; Phillips. Chemical Institute of Canada, Ottawa, pp 626–633

    Google Scholar 

  14. Woo HC, Park KY, Kim YG, Nam IS, Chung JS, Lee JS (1991) Mixed alcohol synthesis from carbon monoxide and dihydrogen over potassium promoted molybdenum carbide catalysts. Appl Catal 75:267–280

    Article  CAS  Google Scholar 

  15. Christensen JM, Duchstein LDL, Wagner JB, Jensen PA, Temel B, Jensen AD (2012) Catalytic conversion of syngas into higher alcohols over carbide catalysts. Ind Eng Chem Res 51:4161–4172

    Article  CAS  Google Scholar 

  16. Mei D, Rosseau R, Kathmann SM, Glezakou VA, Engelhard MH, Jiang W, Wang C, Gerber MA, White JF, Stevens DJ (2010) Ethanol synthesis from syngas over Rh-based/SiO2 catalysts: a combined experimental and theoretical modeling study. J Catal 271:325–342

    Article  CAS  Google Scholar 

  17. Choi Y, Liu P (2009) Mechanism of ethanol synthesis from syngas on Rh(111). J Am Chem Soc 131:13054–13061

    Article  CAS  Google Scholar 

  18. Ferrin P, Simonetti D, Kandoi S, Kunkes E, Dumesic J, Nørskov J, Mavrikakis M (2009) Modeling ethanol decomposition on transition metals: a combined application of scaling and Brønsted–Evans–Polanyi relations. J Am Chem Soc 131:5809–5815

    Article  CAS  Google Scholar 

  19. The Dacapo plane wave/pseudopotential code is available as opensource software at http://wiki.fysik.dtu.dk/dacapo

  20. Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys Rev B 59:7413–7421

    Article  Google Scholar 

  21. Lausche AC, Medford AJ, Khan TS, Xu Y, Bligaard T, Abild-Pedersen F, Nørskov JK, Studt F (2013) On the effect of coverage-dependent adsorbate–adsorbate interactions for CO methanation on transition metal surfaces. J Catal 307:275–282

    Article  CAS  Google Scholar 

  22. Studt F, Abild-Pedersen F, Wu Q, Jensen AD, Temel B, Grunwaldt JD, Nørskov JK (2012) CO hydrogenation to methanol on Cu–Ni catalysts: theory and experiment. J Catal 293:51–60

    Article  CAS  Google Scholar 

  23. Wang S, Temel B, Shen J, Jones G, Grabow LC, Studt F, Bligaard T, Abild-Pedersen F, Christensen CH, Nørskov JK (2011) Universal Brønsted–Evans–Polanyi relations for C–C, C–O, C–N, N–O, N–N, and O–O dissociation reactions. Catal Lett 141:370–373

    Article  CAS  Google Scholar 

  24. Wang S, Petzold V, Tripkovic V, Kleis J, Howalt JG, Skúlason E, Fernández EM, Hvolbæk B, Jones G, Toftelund A, Falsig H, Björketun M, Studt F, Abild-Pedersen F, Rossmeisl J, Nørskov JK, Bligaard T (2011) Universal transition state scaling relations for (de)hydrogenation over transition metals. Phys Chem Chem Phys 13:20760–20765

    Article  CAS  Google Scholar 

  25. Hummelshøj JS, Abild-Pedersen F, Studt F, Bligaard T, Nørskov JK (2012) CatApp: a web application for surface chemistry and heterogeneous catalysis. Angew Chem Int Ed 51:272–274

    Article  Google Scholar 

  26. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  27. Andersson MP, Abild-Pedersen F, Remediakis IN, Bligaard T, Jones G, Engbæk J, Lytken O, Horch S, Nielsen JH, Sehested J, Rostrup-Nielsen JR, Nørskov JK, Chorkendorff I (2008) Structure sensitivity of the methanation reaction: H2-induced CO dissociation on nickel surfaces. J Catal 255:6–19

    Article  CAS  Google Scholar 

  28. Grabow LC, Mavrikakis M (2011) Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal 1:365–384

    Article  CAS  Google Scholar 

  29. Ojeda M, Li A, Nabar R, Nilekar AU, Mavrikakis M, Iglesia E (2010) Kinetically relevant steps and H2/D2 isotope effects in Fischer–Tropsch synthesis on Fe and Co catalysts. J Phys Chem 114:19761–19770

    CAS  Google Scholar 

  30. Ojeda M, Nabar R, Nilekar AU, Ishikawa A, Mavrikakis M, Iglesia E (2010) CO activation pathways and the mechanism of Fischer–Tropsch synthesis. J Catal 272:287–297

    Article  CAS  Google Scholar 

  31. Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T (2011) Density functional theory in surface science and catalysis. Proc Natl Acad Sci USA 108:937–943

    Article  Google Scholar 

  32. Behrens M, Studt F, Kasatkin I, Kühl S, Hävecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep BJ, Tovar M, Fischer RW, Nørskov JK, Schlögl R (2012) The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336:893–897

    Article  CAS  Google Scholar 

  33. Bligaard T, Nørskov JK, Dahl S, Matthiesen J, Christensen CH, Sehested J (2004) The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J Catal 224:206–217

    Article  CAS  Google Scholar 

  34. Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR, Moses PG, Skúlason E, Bligaard T, Nørskov JK (2007) Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett 99:016105

    Article  CAS  Google Scholar 

  35. Jones G, Studt F, Abild-Pedersen F, Nørskov JK, Bligaard T (2011) Scaling relationships for adsorption energies of C2 hydrocarbons on transition metal surfaces. Chem Eng Sci 66:6318–6323

    Article  CAS  Google Scholar 

  36. Pallassana V, Neurock M (2000) Electronic factors governing ethylene hydrogenation and dehydrogenation activity of pseudomorphic PdML/Re(0001), PdML/Ru(0001), Pd(111), and PdML/Au(111) Surfaces. J Catal 191:301–317

    Article  CAS  Google Scholar 

  37. Nørskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen CJH (2002) Universality in heterogeneous catalysis. J Catal 209:275–278

    Article  Google Scholar 

  38. Michaelides A, Liu ZP, Zhang CJ, Alavi A, King DA, Hu P (2003) Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces. J Am Chem Soc 125:3704–3705

    Article  CAS  Google Scholar 

  39. Chinchen GC, Denny PJ, Parker DG, Spencer MS, Whan DA (1987) Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts: use of 14C-labelled reactants. Appl Catal 30:333–338

    Article  CAS  Google Scholar 

  40. Sahibzada M, Metcalfe IS, Chadwick D (1998) Methanol synthesis from CO/CO2/H2 over Cu/ZnO/Al2O3 at differential and finite conversions. J Catal 174:111–118

    Article  CAS  Google Scholar 

  41. Xu R, Yang C, Wei W, Li W, Sun Y, Hu T (2004) Fe-modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas. J Mol Catal A 221:51–58

    Article  CAS  Google Scholar 

  42. Guczi L, Hoffer T, Zsoldos Z, Zyade S, Maire G, Garin F (1991) Structure and catalytic activity of alumina-supported Pt–Co bimetallic catalysts. chemisorption and catalytic reactions. J Phys Chem 95:802–808

    Article  CAS  Google Scholar 

  43. Gnanamani MK, Ribeiro MC, Ma W, Shafer WD, Jacobs G, Graham UM, Davis BH (2011) Fischer–Tropsch synthesis: metal-support interfacial contact governs oxygenates selectivity over CeO2 supported Pt–Co catalysts. Appl Catal A 393:17–23

    Article  CAS  Google Scholar 

  44. Jacobsen CJH, Dahl S, Clausen BS, Bahn S, Logadottir A, Nørskov JK (2001) Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. J Am Chem Soc 123:8404

    Article  CAS  Google Scholar 

  45. Greeley J, Nørskov JK (2005) A general scheme for the estimation of oxygen binding energies on binary transition metal surface alloys. Surf Sci 592:104–111

    Article  CAS  Google Scholar 

  46. Mortensen JJ, Hammer B, Nørskov JK (1998) Alkali promotion of N2 dissociation over Ru(0001). Phys Rev Lett 80:4333–4336

    Article  CAS  Google Scholar 

  47. Bengaard HS, Nørskov JK, Sehested JS, Clausen BS, Nielsen LP, Molenbroek A, Rostrup-Nielsen JR (2002) Steam reforming and graphite formation on Ni catalysts. J Catal 209:365

    Article  CAS  Google Scholar 

  48. Tait SL, Dohnálek Z, Campbell CT, Kay BD (2006) n-Alkanes on Pt(111) and on C(0001)/Pt(111): chain length dependence of kinetic desorption parameters. J Chem Phys 125:234308

    Article  Google Scholar 

Download references

Acknowledgments

Primary support by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences to the SUNCAT Center for Interface Science and Catalysis is gratefully acknowledged (JKN, FS, FAP, ACL, AJM). In addition, AJM wishes to thank the Danish Ministry of Science, Technology and Innovation through the Catalysis for Sustainable Energy initiative, the Danish National Research Foundation and National Science Foundation through the Nordic Research Opportunity and Graduate Research Fellowship Program Grant No. DGE-1147470, and the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Studt.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 175 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medford, A.J., Lausche, A.C., Abild-Pedersen, F. et al. Activity and Selectivity Trends in Synthesis Gas Conversion to Higher Alcohols. Top Catal 57, 135–142 (2014). https://doi.org/10.1007/s11244-013-0169-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0169-0

Keywords

Navigation