Skip to main content

Advertisement

Log in

Genetic Algorithm Procreation Operators for Alloy Nanoparticle Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The long-term stability of binary nanoparticles and clusters is one of the main challenges in the development of novel (electro-)catalysts for e.g. CO2 reduction. Here, we present a method for predicting the optimal composition and structure of alloy nanoparticles and clusters, with particular focus on the surface properties. Based on a genetic algorithm (GA) we introduce and discuss efficient permutation operations that work by interchanging positions of elements depending on their local environment and position in the cluster. We discuss the fact that in order to be efficient, the operators have to be dynamic, i.e. change their behavior during the course of an algorithm run. The implementation of the GA including the customized operators is freely available at http://svn.fysik.dtu.dk/projects/pga.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. wiki.fysik.dtu.dk/asap

References

  1. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115(2):301. doi:10.1016/0021-9517(89)90034-1

    Google Scholar 

  2. Kleis J, Greeley J, Romero NA, Morozov VA, Falsig H, Larsen AH, Lu J, Mortensen JJ, Duak M, Thygesen KS, Nørskov JK, Jacobsen KW (2011) Catal Lett 141(8):1067. doi:10.1007/s10562-011-0632-0

    Article  CAS  Google Scholar 

  3. Peterson AA, Grabow LC, Brennan TP, Shong B, Ooi C, Wu DM, Li CW, Kushwaha A, Medford AJ, Mbuga F, Li L, Nørskov JK (2012) Top Catal 55(19–20):1276. doi:10.1007/s11244-012-9908-x

    Article  CAS  Google Scholar 

  4. Cuenya BR (2010) Thin Solid Films 518(12):3127. doi:10.1016/j.tsf.2010.01.018

  5. Ahmed J, Ramanujachary KV, Lofland SE, Furiato A, Gupta G, Shivaprasad S, Ganguli AK (2008) Colloids Surf A 331(3):206. doi:10.1016/j.colsurfa.2008.08.007

    Google Scholar 

  6. Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Nørskov JK (2009) Nat Chem 1(7):552. doi:10.1038/nchem.367

  7. Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C, Liu Z, Kaya S, Nordlund D, Ogasawara H, Toney MF, Nilsson A (2010) Nat Chem 2(6):454. doi:10.1038/nchem.623

    Google Scholar 

  8. Christophe J, Doneux T, Buess-Herman C (2012) Electrocatalysis 3(2):139. doi:10.1007/s12678-012-0095-0

  9. Studt F, Abild-Pedersen F, Wu Q, Jensen AD, Temel B, Grunwaldt JD, Nørskov JK (2012) J Catal 293:51. doi:10.1016/j.jcat.2012.06.004

  10. Hohenberg P, Kohn W (1964) Phys Rev B 136(3B):B864. doi:10.1103/PhysRev.136.B864

  11. Kohn W, Sham L (1965) Phys Rev 140(4A):1133

  12. Sørensen MR, Voter AF (2000) J Chem Phys 112(21):9599. doi:10.1063/1.481576

    Google Scholar 

  13. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Science 220(4598):671. doi:10.1126/science.220.4598.671

    Google Scholar 

  14. Chen G, Delafuente DA, Sarangapani S, Mallouk TE (2001) Catal Today 67(4):341. doi:10.1016/S0920-5861(01)00327-3

    Google Scholar 

  15. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

  16. Hartke B (1993) J Phys Chem 97(39):9973. doi:10.1021/j100141a013

    Article  CAS  Google Scholar 

  17. Zeiri Y (1995) Phys Rev E 51(4):R2769. doi:10.1103/PhysRevE.51.R2769

  18. Deaven DM, Ho KM (1995) Phys Rev Lett 75(2):288

    Article  CAS  Google Scholar 

  19. Barron C, Gomez S, Romero D, Saavedra A (1999) Appl Math Lett 12:85

  20. Johnston R (2003) Dalton Trans 4193–4207. doi:10.1039/B305686D

  21. Hartke B (2004) Struct Bonding 110:33. doi:10.1007/b13932

  22. Dugan N, Erkoç S (2009) Algorithms 2(1):410. doi:10.3390/a2010410

  23. Mainardi DS, Balbuena PB (2001) Langmuir 17(6):2047. doi:10.1021/la0014306

  24. Montejano-Carrizales J, Iñiguez M, Alonso J (1994) Phys Rev B 49(23):16649. doi:10.1103/PhysRevB.49.16649

    Google Scholar 

  25. Hristova E, Dong Y, Grigoryan VG, Springborg M (2008) J Phys Chem A 112(34):7905. doi:10.1021/jp801837d

    Google Scholar 

  26. Montejano-Carrizales J, Moran-Lopez J (1992) Nanostruct Mater 1(5):397. doi:10.1016/0965-9773(92)90090-K

    Article  CAS  Google Scholar 

  27. Jellinek J, Krissinel EB (1996) Chem Phys Lett 4:283

    Google Scholar 

  28. Landis DD, Hummelshøj JS, Nestorov S, Greeley J, Dulak M,Bligaard T, Nørskov JK, Jacobsen KW (2012) Comput Sci Eng. doi:10.1109/MCSE.2012.16

  29. Bahn SR, Jacobsen KW (2002) Comput Sci Eng 4(3):56. doi:10.1109/5992.998641

    Article  CAS  Google Scholar 

  30. Reeves CR (2010) Handbook of Metaheuristics, International Series in Operations Research & Management Science vol. 146. Springer, Boston. doi:10.1007/978-1-4419-1665-5

  31. De Jong KA (1975) An analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis, University of Michigan

  32. Molenbroek AM, Haukka S, Clausen BS (1998) J Phys Chem B 102:10680. doi:10.1021/jp9822081

    Google Scholar 

  33. Jacobsen KW, Nørskov JK, Puska M (1987) Physl Rev B 35(14):7423. doi:10.1103/PhysRevB.35.7423

    Google Scholar 

  34. Jacobsen KW, Stoltze P, Nørskov JK (1996) Surf Sci 366(2):394. doi:10.1016/0039-6028(96)00816-3

    Google Scholar 

  35. Vegge T, Rasmussen T, Leffers T, Pedersen OB, Jacobsen KW (2001) Philos Mag Lett 81(3):137. doi:10.1080/09500830010019040

    Article  CAS  Google Scholar 

  36. Vegge T (2001) Mater Sci Eng A 309310(0):113. doi:10.1016/S0921-5093(00)01624-5

  37. Vegge T, Jacobsen KW (2002) J Phys 14(11):2929. doi:10.1088/0953-8984/14/11/309

    Google Scholar 

  38. Mortensen JJ, Hansen LB, Jacobsen KW (2005) Phys Rev B 71:35109

    Article  Google Scholar 

  39. Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Dulak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen HA, Kristoffersen HH, Kuisma M, Larsen AH, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses PG, Ojanen J, Olsen T, Petzold V, Romero NA, Stausholm-Moller J, Strange M, Tritsaris GA, Vanin M, Walter M, Hammer B, Hakkinen H, Madsen GKH, Nieminen RM, Nørskov JK, Puska M, Rantala TT, Schiøtz J, Thygesen KS, Jacobsen KW (2010) J Phys 22(25). doi:10.1088/0953-8984/22/25/253202

  40. Blöchl P (1994) Phys Rev B 50(24):17953

    Article  Google Scholar 

  41. Larsen AH, Vanin M, Mortensen JJ, Thygesen KS, Jacobsen KW (2009) Phys Rev B 80(19):195112. doi:10.1103/PhysRevB.80.195112

    Article  Google Scholar 

  42. Hammer B, Hansen L, Nørskov J (1999) Phys Rev B 59(11):7413. doi:10.1103/PhysRevB.59.7413

    Google Scholar 

  43. Mackay AL (1962) Acta Crystallogr 15(9):916. doi:10.1107/S0365110X6200239X

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steen Lysgaard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lysgaard, S., Landis, D.D., Bligaard, T. et al. Genetic Algorithm Procreation Operators for Alloy Nanoparticle Catalysts. Top Catal 57, 33–39 (2014). https://doi.org/10.1007/s11244-013-0160-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0160-9

Keywords

Navigation