Skip to main content
Log in

Hydrogen Storage Properties of Complex Metal Hydride-Carbon Materials

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Hydrogen storage properties of NaAlH4 can be improved by mixing it with Co/carbon catalysts. The importance of cobalt nanoparticles was established by varying the amount of active cobalt in the reaction vessel. This was achieved either by keeping the weight of NaAlH4 and carbon constant while varying the amount of Co/carbon catalyst used or by poisoning the cobalt active site with CO. Another approach to improve the hydrogen storage properties of complex metal hydride is through nano-confinement of the hydride in carbon pores. LiBH4–carbon composite formed via liquid phase infusion of LiBH4 into carbon was examined for reversibility in the hydriding/dehydriding cycles. The physical constraints imposed by the carbon nano-pores appeared to be effective in deterring the loss of cyclability due to sintering of the hydride. The loss in hydrogen storage appeared to be the result of LiBH4 reaction with impurities/reactive functional groups on the carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang J, Sudik A, Wolverton C (2007) J Phys Chem C 111:19134–19140

    Article  CAS  Google Scholar 

  2. Vajo John J, Skeith Sky L, Mertens F (2005) J Phys Chem B 109:3719–3722

    Article  CAS  Google Scholar 

  3. Lee H-S, Lee Y-S, Suh J-Y, Kim M, Yu J-S, Cho YW (2011) J Phys Chem C 115:20027–20035

    Article  CAS  Google Scholar 

  4. Gennari FC (2011) Int J Hydrogen Energy 36:15231–15238

    Article  CAS  Google Scholar 

  5. Pinkerton FE, Meisner GP, Meyer MS, Balogh MP, Kundrat MD (2005) J Phys Chem B 109:6–8

    Article  CAS  Google Scholar 

  6. Liu D, Sudik A, Yang J, Ferro P, Wolverton C (2012) J Phys Chem C 116:1485–1492

    Article  CAS  Google Scholar 

  7. Alapati SV, Johnson JK, Sholl DS (2008) J Phys Chem C 112:5258–5262

    Article  CAS  Google Scholar 

  8. Yang J, Sudik A, Siegel DJ, Halliday D, Drews A, Carter RO, Wolverton C, Lewis GJ, Sachtler A, Low JJ, Faheem SA, Lesch DA, Ozolins V (2008) Angew Chem Int Ed 47:882–887

    Article  CAS  Google Scholar 

  9. Bogdanovic B, Schwickardi M (1997) J Alloys Compds 253–254:1–9

    Article  Google Scholar 

  10. Tang WS, Wu G, Liu T, Wee ATS, Yong CK, Xiong Z, Hor ATS, Chen P (2008) Dalton Trans 18:2395–2399

    Article  Google Scholar 

  11. Pinkerton FE, Meyer MS, Meisner GP, Balogh MP (2006) J Phys Chem B 110:7967–7974

    Article  CAS  Google Scholar 

  12. Shao J, Xiao X, Chen L, Fan X, Li S, Ge H, Wang Q (2012) J Mat Chem 22:20764–20772

    Article  CAS  Google Scholar 

  13. Hu J, Ren S, Witter R, Fichtner M (2012) Adv Energy Mater 2:560–568

    Article  CAS  Google Scholar 

  14. Frankcombe TJ (2012) Chem Rev 112:2164–2178

    Article  CAS  Google Scholar 

  15. Bogdanovic B, Felderhoff M, Germann M, Hartel M, Pommerin A, Schuth F, Weidenthaler C, Zibrowius B (2003) J Alloys Compds 350:246–255

    Article  CAS  Google Scholar 

  16. Graetz J, Chaudhuri S, Salguero TT, Vajo JJ, Meyer MS, Pinkerton FE (2009) Nanotechnology 20(20):1–8 204007

    Article  Google Scholar 

  17. Lin SSY, Yang J, Kung HH (2012) Int J Hydrogen Energy 37:2737–2741

    Article  CAS  Google Scholar 

  18. Comanescu C, Capurso G, Maddalena A (2012) Nanotechnology 23(38):1–6 385401

    Article  Google Scholar 

  19. Moussa G, Bernard S, Demirci UB, Chiriac R, Miele P (2012) Int J Hydrogen Energy 37:13437–13445

    Article  CAS  Google Scholar 

  20. Mulas G, Campesi R, Garroni S, Napolitano E, Milanese C, Dolci F, Pellicer E, Baro MD, Marini A (2012) J Alloys Compds 536:S236–S240

    Article  CAS  Google Scholar 

  21. Nielsen TK, Javadian P, Polanski M, Besenbacher F, Bystrzycki J, Jensen TR (2012) J Phys Chem C 116:21046–21051

    Article  CAS  Google Scholar 

  22. Stavila V, Bhakta RK, Alam TM, Majzoub EH, Allendorf MD (2012) ACS Nano 6:9807–9817

    Article  CAS  Google Scholar 

  23. Liu X, Peaslee D, Jost CZ, Majzoub EH (2010) J Phys Chem C 114:14036–14041

    Article  CAS  Google Scholar 

  24. Verkuijlen MHW, Ngene P, de Kort DW, Barre C, Nale A, vanEck ERH, van Bentum PJM, de Jongh PE, Kentgens APM (2012) J Phys Chem C 116:22169–22178

    Article  CAS  Google Scholar 

  25. Gross AF, Vajo JJ, Van Atta SL, Olson GL (2008) J Phys Chem C 112:5651–5657

    Article  CAS  Google Scholar 

  26. Lohstroh W, Roth A, Hahn H, Fichtner M (2010) Chem Phys Chem 11:789–792

    CAS  Google Scholar 

  27. Gao J, Ngene P, Lindemann I, Gutfleisch O, de Jong KP, de Jongh PE (2012) J Mat Chem 22:13209–13215

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the DOE Hydrogen Program, Project number DE-FC36-08GO18136.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayfair C. Kung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, S.SY., Yang, J., Kung, H.H. et al. Hydrogen Storage Properties of Complex Metal Hydride-Carbon Materials. Top Catal 56, 1937–1943 (2013). https://doi.org/10.1007/s11244-013-0130-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0130-2

Keywords

Navigation