Skip to main content
Log in

Systematic Study of the Oxidation of Methane Using Supported Gold Palladium Nanoparticles Under Mild Aqueous Conditions

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The oxidation of methane using hydrogen peroxide has been studied using supported gold palladium catalysts prepared using the incipient wetness technique. The effect of reaction conditions and catalyst parameters has been investigated. The supported gold palladium nanoparticles produce methyl hydroperoxide as the primary reaction product which is subsequently converted to methanol with high selectivity, ca. 40–70 %. The selectivity to methanol is influenced by the oxidation state the palladium component of the catalyst. In contrast to homogeneous gold and palladium catalysts the heterogeneous gold palladium nanoalloys are reusable and affords high oxygenate selectivity (ca. 90 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gist R (2005) “Global oil and gas market: what does the future hold?” MAI World Methanol Conference Miami USA

  2. Hutchings GJ, Scurrell MS, Woodhouse JR (1989) Chem Soc Rev 18:251–283

    Article  CAS  Google Scholar 

  3. Xu Y, Bao X, Lin L (2003) J Catal 216:386–395

    Article  CAS  Google Scholar 

  4. Alvarez-Galvan MC, Mota N, Ojeda M, Rojas S, Navarro RM, Fierro JL (2011) Catal Today 171:15–23

    Article  CAS  Google Scholar 

  5. Hunter NR, Gesser HD, Morton LA, Yarlagadda PS, Fung DPC (1990) App. Catal. 57:45–54

    CAS  Google Scholar 

  6. Foster NR (1985) App. Catal. 19:1–11

    Article  CAS  Google Scholar 

  7. Gesser HD, Hunter NR, Prakash CB (1985) Chem. Rev. 85:235–244

    CAS  Google Scholar 

  8. Sen A (1998) Acc Chem Res 31:550–557

    Article  CAS  Google Scholar 

  9. Periana RA, Taube DJ, Gamble S, Taube H, Satoh T, Fujii H (1998) Science 280:560–564

    Article  CAS  Google Scholar 

  10. Stahl SS, Labinger JA, Bercaw JE (1998) Angew Chem Int Ed 37:2180–2192

    Article  Google Scholar 

  11. Periana RA, Taube DJ, Evitt ER, Löffler DG, Wentrcek PR, Voss G, Masuda T (1993) Science 259:340–343

    Article  CAS  Google Scholar 

  12. Snyder JC, Grosse AV (1950) USPTO 2492983 Houdry Process Corp

  13. Shilov AE, Shul’pin GB (1987) Russ Chem Rev 56:442–464

    Article  Google Scholar 

  14. Jones C, Taube D, Ziatdinov VR, Periana RA, Nielsen RJ, Oxgaard J, Goddard WA (2004) Angew Chem 116:4726–4729

    Article  Google Scholar 

  15. Süss-Fink G, Nizova GV, Stanislas S, Shul’pin GB (1998) J Mol Catal A: Chemical 130:163–170

    Article  Google Scholar 

  16. Mizuno N, Seki Y, Nishiyama Y, Kiyoto I, Misono M (1999) J Catal 184:550–552

    Article  CAS  Google Scholar 

  17. Yuan Q, Deng W, Zhang Q, Wang Y (2007) Adv Syn Catal 349:1199–1209

    Article  CAS  Google Scholar 

  18. Raja R, Ratnasamy P (1997) App Catal A 158:L7–L15

    Article  CAS  Google Scholar 

  19. Raja R, Ratnasamy P (1997) Catal Lett 48:1–10

    Article  CAS  Google Scholar 

  20. Lin M, Sen A (1992) J Am Chem Soc 114:7308–7310

    Article  Google Scholar 

  21. Kesavan L, Tiruvalam R, Ab Rahim MH, Bin Saiman MI, Enache DI, Jenkins R, Dimitratos N, Lopez-Sanchez JA, Taylor SH, Knight DW, Kiely CJ, Hutchings GJ (2011) Science 331:195–199

    Article  CAS  Google Scholar 

  22. Bin Saiman MI, Brett GL, Tiruvalam R, Forde MM, Sharples K, Thetford A, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, Murphy DM, Bethell D, Willock DJ, Taylor SH, Knight DW, Kiely CJ, Hutchings GJ (2012) Angew Chem Int Ed 51:5981–5985

    Article  CAS  Google Scholar 

  23. Enache DI, Edwards JK, Landon P, Solsona-Espriu B, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight DW, Hutchings GJ (2006) Science 311:362–365

    Article  CAS  Google Scholar 

  24. Dimitratos N, Lopez-Sanchez JA, Morgan D, Carley AF, Tiruvalam R, Kiely CJ, Bethell D, Hutchings GJ (2009) Phys Chem Chem Phys 11:5142–5153

    Article  CAS  Google Scholar 

  25. Edwards JK, Solsona B, Ntainjua EN, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ (2009) Science 323:1037–1041

    Article  CAS  Google Scholar 

  26. Pritchard JC, He Q, Ntainjua EN, Piccinini M, Edwards JK, Herzing AA, Carley AF, Moulijn JA, Kiely CJ, Hutchings GJ (2010) Green Chem 12:915–921

    Article  CAS  Google Scholar 

  27. Pritchard JC, Kesavan L, Piccinini M, He Q, Tiruvalam R, Dimitratos N, Lopez-Sanchez JA, Carley AF, Edwards JK, Kiely CJ, Hutchings GJ (2006) Langmuir 26:16568–16577

    Article  Google Scholar 

  28. Ab Rahim MH, Forde MM, Jenkins RL, Hammond C, He Q, Dimitratos N, Lopez-Sanchez JA, Carley AF, Taylor SH, Willock DJ, Murphy DM, Kiely CJ, Hutchings GJ (2012) Oxidation of methane to methanol with hydrogen peroxide using supported gold–palladium alloy nanoparticles. Angew Chem Int Ed doi. doi:10.1002/anie.201207717

    Google Scholar 

  29. Forde MM, Grazia BC, Armstrong R, Jenkins RL, Ab Rahim MH, Carley AF, Dimitratos N, Lopez-Sanchez JA, Taylor SH, McKeown NB, Hutchings GJ (2012) J Catal 290:177–185

    Article  CAS  Google Scholar 

  30. Navalon S, Martin R, Alvaro M, Garcia H (2010) Angew Chem Int Ed 49:8403–8407

    Article  CAS  Google Scholar 

  31. Han YF, Phonthammachai N, Ramesh K, Zhong Z, White T (2007) Environ Science Tech 42:908–912

    Article  Google Scholar 

  32. Hammond C, Forde MM, Ab Rahim MH, Thetford A, He Q, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, Dummer NF, Murphy DM, Carley AF, Taylor SH, Willock DJ, Stangland EE, Kang J, Hagen H, Kiely CJ, Hutchings GJ (2012) Angew. Chem Int Ed 51:5129–5133

    Article  CAS  Google Scholar 

  33. Taylor GC, Waddington RJ, Moseley R, Williams KR, Embery G (1996) Biomaterials 1996(17):1313–1319

    Article  Google Scholar 

  34. Süss-Fink G, Nizova GV, Stanislas S, Shul’pin GB (1998) J Mol Cata A: Chem 130:163–170

    Article  Google Scholar 

  35. Kiepe J, Horstmann S, Fischer K, Gmehling J (2003) Ind Eng Chem Res 42:5392–5398

    Article  CAS  Google Scholar 

  36. Kirk AD (1965) Can J Chem 43:2236–2242

    Article  CAS  Google Scholar 

  37. Ntainjua NE, Edwards JK, Carley AF, Lopez-Sanchez JA, Moulijn JA, Herzing AA, Kiely CJ, Hutchings GJ (2008) Green Chem 10:1162–1169

    Article  Google Scholar 

  38. Edwards JK, Thomas A, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ (2008) Green Chem 10:388–394

    Article  CAS  Google Scholar 

  39. Bonino F, Damin A, Ricchiardi G, Ricci M, Spanò G, D’Aloisio R, Zecchina A, Lamberti C, Prestipino C, Bordiga S (2004) J Phys Chem B 108:3573–3583

    Article  CAS  Google Scholar 

  40. Antcliff KL, Murphy DM, Griffiths E, Giamello E (2003) Phys Chem Chem Phys 5:4306–4316

    Article  CAS  Google Scholar 

  41. Thetford A, Hutchings GJ, Taylor SH, Willock DJ (2011) Proceedings of the royal society A: mathematical. Phys Eng Sci 7:8885–8900

    Google Scholar 

  42. Li J, Staykov A, Ishihara T, Yoshizawa K (2011) J Phys Chem C 115:7392–7398

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham J. Hutchings.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 140 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ab Rahim, M.H., Forde, M.M., Hammond, C. et al. Systematic Study of the Oxidation of Methane Using Supported Gold Palladium Nanoparticles Under Mild Aqueous Conditions. Top Catal 56, 1843–1857 (2013). https://doi.org/10.1007/s11244-013-0121-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0121-3

Keywords

Navigation