Skip to main content
Log in

Performance of Silicotungstic Acid Incorporated Mesoporous Catalyst in Direct Synthesis of Dimethyl Ether from Syngas in the Presence and Absence of CO2

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Dimethyl ether (DME), which is an excellent green diesel fuel alternate, is synthesized following a direct synthesis route from synthesis gas, by using a bi-functional catalyst mixture, which was composed of a silicotungstic acid incorporated mesoporous catalyst [TRC-75(L)] and a commercial Cu–Zn based catalyst. Higher DME selectivity values were obtained by using TRC-75(L), than commercial γ-alumina at 50 bars. Presence of CO2 in the feed stream caused significant enhancement in DME selectivity. Results showed that DME selectivity of about 0.85 was obtained in a temperature range 250–275 °C in the presence of 10 % CO2. In fact, CO2 was also used as a resource to produce DME at lower temperatures. Reverse dry reforming and ethanol formation reactions were observed as side reactions, especially at higher temperatures. Results also proved that direct synthesis of DME from syngas has major CO conversion and DME selectivity advantages over the two step process involving consecutive methanol synthesis and dehydration steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Olah GA, Goeppert A, Prakash GKS (2006) Beyond oil and gas: the methanol economy. Wiley, Weinheim

    Google Scholar 

  2. Dogu T, Varisli D (2007) Turk J Chem 31:551–567

    CAS  Google Scholar 

  3. Semelsberger TA, Borup RL, Greene HL (2006) J Power Sources 156:497–511

    Article  CAS  Google Scholar 

  4. Yaripour F, Baghaei F, Schmidt I, Perregaard J (2005) Catal Commun 6:147–152

    Article  CAS  Google Scholar 

  5. Song J, Huang Z, Qiao X, Wang W (2004) Energ Conver Manage 45:2223–2232

    Article  CAS  Google Scholar 

  6. Mollavali M, Yaripour F, Atashi H, Sahebdelfar S (2008) Ind Eng Chem Res 47:3265–3273

    Article  CAS  Google Scholar 

  7. Hassanpour S, Taghizadeh M, Yaripour F (2010) Ind Eng Chem Res 49:4063–4069

    Article  CAS  Google Scholar 

  8. Seo CW, Jung KD, Lee KY, Yoo KS (2008) Ind Eng Chem Res 47:6573–6578

    Article  CAS  Google Scholar 

  9. Pop G, Bozga G, Ganea R, Natu N (2009) Ind Eng Chem Res 48:7065–7071

    Article  CAS  Google Scholar 

  10. Ciftci A, Sezgi NA, Dogu T (2010) Ind Eng Chem Res 9:6753–6762

    Article  Google Scholar 

  11. Vishwanathan V, Jun KW, Kim JW, Roh HS (2004) Appl Catal A-Gen 276:251–255

    Article  CAS  Google Scholar 

  12. Aguayo AT, Erena J, Mier D, Arandes JM, Olazar M, Bilbao J (2007) Ind Eng Chem Res 46:5522–5530

    Article  CAS  Google Scholar 

  13. Erena J, Garona R, Arandes JM, Aguayo AT, Bilbao J (2005) Catal Today 107–108:467–473

    Article  Google Scholar 

  14. Ogawa T, Inoue N, Shikada T, Inokoshi O, Ohno Y (2004) Stud Surf Sci Catal 147:379–384

    Article  CAS  Google Scholar 

  15. Mao D, Yang W, Xia J, Zhang B, Lu G (2006) J Mol Catal A-Chem 250:138–144

    Article  CAS  Google Scholar 

  16. An X, Zuo YZ, Zhang Q, Wang DZ, Wang JF (2008) Ind Eng Chem Res 47:6547–6554

    Article  CAS  Google Scholar 

  17. Moradi G, Ahmadpour J, Nazari M, Yaripour F (2008) Ind Eng Chem Res 47:7672–7679

    Article  CAS  Google Scholar 

  18. Naik SP, Du H, Wan H, Bui V, Miller JD, Zmierczak WW (2008) Ind Eng Chem Res 47:9791–9794

    Article  CAS  Google Scholar 

  19. Sofianos AC, Scurrell MS (1991) Ind Eng Chem Res 30:2372–2378

    Article  CAS  Google Scholar 

  20. Ramos FS, Duarte de Farias AM, Borges LEP, Monterio JL, Fraga MA, Sousa-Aguiar EF, Appel LG (2005) Catal Today 101:39–44

    Article  CAS  Google Scholar 

  21. Shim HM, Lee SJ, Yoo YD, Yun TS, Kim HT (2009) Korean J Chem Eng 26(3):641–648

    Article  CAS  Google Scholar 

  22. Kim JH, Park MJ, Kim SJ, Joo OS, Jung KD (2004) Appl Catal A-Gen 264:37–41

    Article  CAS  Google Scholar 

  23. Erena J, Sierra I, Olazar M, Gayubo AG, Aguayo AT (2008) Ind Eng Chem Res 47:2238–2247

    Article  CAS  Google Scholar 

  24. Sierra I, Erena J, Aguayo AT, Olazar M, Bilbao J (2010) Ind Eng Chem Res 49:481–489

    Article  CAS  Google Scholar 

  25. Ng KL, Chadwick D, Toseland BA (1999) Chem Eng Sci 54:3587–3592

    Article  CAS  Google Scholar 

  26. Chinchen GC, Denny PJ, Parker DG, Spencer MS, Whan D (1987) Appl Catal 30:333–338

    Article  CAS  Google Scholar 

  27. Vanden Bussche KM, Froment GF (1996) J Catal 161:1–10

    Article  CAS  Google Scholar 

  28. Kresge CT, Leonowicz ME, Roth WJ, Varuli JC, Beck JS (1992) Nature 359:710–712

    Article  CAS  Google Scholar 

  29. Gucbilmez Y, Dogu T, Balci S (2006) Ind Eng Chem Res 45:3496–3502

    Article  CAS  Google Scholar 

  30. Varisli D, Dogu T, Dogu G (2009) Ind Eng Chem Res 48:9394–9401

    Article  CAS  Google Scholar 

  31. Varisli D, Dogu T, Dogu G (2010) Chem Eng Sci 65:153–159

    Article  CAS  Google Scholar 

  32. Varisli D, Dogu T, Dogu G (2008) Ind Eng Chem Res 47:4071–4076

    Article  CAS  Google Scholar 

  33. Ciftci A, Varisli D, Dogu T (2010) Int J Chem React Eng 8:A45

    Google Scholar 

  34. Herrera JH, Kwak JH, Hu JZ, Wang Y, Peden CHF (2008) Top Catal 49:259–267

    Article  CAS  Google Scholar 

  35. Bandiera J, Naccache C (1991) Appl Catal 69:139–148

    Article  CAS  Google Scholar 

  36. Blaszkowski SR, Van Santen R (1996) J Am Chem Soc 118:5152–5153

    Article  CAS  Google Scholar 

  37. Tokay KC, Dogu T, Dogu G (2012) Chem Eng J 184:278–285

    Article  CAS  Google Scholar 

  38. Twigg MV, Spencer MS (2001) Appl Catal A-Gen 212:161–174

    Article  CAS  Google Scholar 

  39. Souza MMVM, Ferreira KA, Macedo Neto OR, Ribeiro NFP, Schmal M (2008) Catal Today 133–135:750–754

    Article  Google Scholar 

  40. Tsai MC, Wang JH, Shen CC, Yeh CT (2011) J Catal 279:241–245

    Article  CAS  Google Scholar 

  41. Peng G, Sibener SJ, Schatz GC, Mavrikakis M (2012) Surface Sci 606:1050–1055

    Article  CAS  Google Scholar 

  42. Pontzen F, Liebner W, Gronemann V, Rothaemel M, Ahlers B (2011) Catal Today 171:242–250

    Article  CAS  Google Scholar 

  43. Bonura G, Arena F, Mezzatesta G, Cannilla C, Spadaro L (2011) Catal Today 171:251–256

    Article  CAS  Google Scholar 

  44. Naik SP, Ryu T, Bui V, Miller JD, Drinnan NB, Zmierczak W (2011) Chem Eng J 167:362–368

    Article  CAS  Google Scholar 

  45. Zha F, Ding J, Cheng Y, Ding JF, Wang JY, Ma J (2012) Ind Eng Chem Res 51:345–352

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of TUBITAK (The Scientific and Technological Research Council of Turkey) through 108M571 project, Middle East Technical University funds and valuable contributions of Dr. Gulsen Dogu and Seval Gunduz are gratefully acknowledged. TOYO company is also acknowledged for supplying γ-alumina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timur Dogu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Celik, G., Arinan, A., Bayat, A. et al. Performance of Silicotungstic Acid Incorporated Mesoporous Catalyst in Direct Synthesis of Dimethyl Ether from Syngas in the Presence and Absence of CO2 . Top Catal 56, 1764–1774 (2013). https://doi.org/10.1007/s11244-013-0112-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0112-4

Keywords

Navigation