Skip to main content

Advertisement

Log in

Solar Thermal Hydrogen Production from Water over Modified CeO2 Materials

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A series of cerium oxide based materials for hydrogen production from water was studied by temperature-programmed reduction, X-ray diffraction and X-ray photoelectron spectroscopy (XPS) in addition to thermal reactions with water vapour. The addition of uranium ions into CeO2, making mixed oxides Ce x U1−x O2, resulted in noticeable modification of the reduction properties of CeO2; with the main observations being the decrease in reduction temperature and the increase of hydrogen consumption when compared to CeO2 alone. XPS U4f of the as prepared Ce0.5U0.5O2 showed the presence of large amounts of U6+ cations at 380.9 eV in addition to the U4+ cations at 379.9 eV; the ratio U4+ to U6+ cations was found equal to 0.35. XPS Ce3d showed, on the contrary, considerable amount of Ce3+ cations with an estimated ratio of Ce3+ to Ce4+ = ca. 0.5. Ar-ions sputtering results in decreasing the U6+ contribution and a dramatic increase of the Ce3+ contribution. The decrease of U6+ cations was, however, not mirrored by the increase in Ce3+ cations. After five minutes of Ar ions sputtering (1 kV, 10 mA) the surface and near surface Ce3d line shapes looked closer to those of Ce2O3 with prominent Ce3d5/2 and Ce3d3/2 lines at 885.6 and 904.0 eV attributed to v′ and u′, respectively. The Ce x U1−x O2 series was tested for hydrogen production from water (where x = 0, 0.25, 0.5, 0.75 and 1). All uranium containing oxides had higher activity than CeO2 or UO2 alone. Ce0.75U0.25O2 was found to have the highest activity in the studied series; about one order of magnitude higher than that of CeO2 alone at the same temperature. The reason for the enhanced activity is linked to the ease by which oxygen ions are removed from the oxide materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Idriss H (2004) Platinum Met Rev 48(3):105–115

    Article  CAS  Google Scholar 

  2. Charvin P, Abanades S, Flamant G, Neveu P, Lemort F (2007) Energy 32:1124–1133

    Article  CAS  Google Scholar 

  3. Coelho B, Oliveira AC, Mendes A (2010) Energy Environ Sci 3:1398–1405

    Article  Google Scholar 

  4. Le Gal A, Abanades S, Flamant G (2010) In: Proceedings WHEC2010, Essen, pp 301–306

  5. Kang K-S, Kim C-H, Park C-S, Kim J-W (2007) J Ind Eng Chem 13:657–663

    CAS  Google Scholar 

  6. Xu W, Si R, Senanayake SD, Llorca J, Idriss H, Stacchiola D, Hanson JC, Rodriguez JA (2012) J Catal 291:117–126

    Article  CAS  Google Scholar 

  7. Hinatsu Y, Takeo F (1988) J Solid State Chem 76:124–130

    Article  CAS  Google Scholar 

  8. Lorenzelli R, Touzelin B (1980) J Nucl Mater 95:290–302

    Article  CAS  Google Scholar 

  9. Markin TL, Street RS, Crouch EC (1970) J Inorg Nucl Chem 32:59–75

    Article  CAS  Google Scholar 

  10. Murray AD, Catlow CRA, Fender BEF (1987) J Chem Soc Faraday Trans II 83:1113–1120

    Article  CAS  Google Scholar 

  11. Diagne C, Idriss H, Pearson K, Gómez-García MA, Kiennemann A (2004) C R Chim 7:617–622

    Article  CAS  Google Scholar 

  12. Diagne C, Idriss H, Kiennemann A (2002) Catal Commun 3:565–571

    Article  CAS  Google Scholar 

  13. Idriss H (2010) Surf Sci Rep 65:67–109

    Article  CAS  Google Scholar 

  14. Andersson DA, Sim SI, Skorodumov NV, Abrikosov IA, Johansson B (2007) Appl Phys Lett 90:031909–031911

    Article  Google Scholar 

  15. Kang S-H, Yi JD, Yoo HI, Kim S-H, Lee YW (2002) J Phys Chem Solids 63:773–780

    Article  CAS  Google Scholar 

  16. Keskar M, Kasar UM, Singh Mudher KD (2004) J Nucl Mater 334:207–213

    Article  CAS  Google Scholar 

  17. Bera S, Mittal VK, Krishnan RV, Saravanan T, Velmurugan S, Nagarajan K, Narasimhan SV (2009) J Nucl Mater 393:120–125

    Article  CAS  Google Scholar 

  18. Hanken BE, Stanek CR, Gronbech-Jensen N, Asta M (2011) Phys Rev B 84:085131-1–085131-9

    Google Scholar 

  19. Tagawa H, Funjo T, Watanabe K, Nakagawa Y, Saita K (1981) Bull Chem Soc Jpn 54:138–142

    Article  CAS  Google Scholar 

  20. Mattos L, Noronha F (2005) J Power Sources 145:10–15

    Article  CAS  Google Scholar 

  21. Rao R, Mishra B (2003) Bull Catal Soc India 2:122–134

    Google Scholar 

  22. Thompson A (1978) Oxides of the rare earths. Wiley, New York

    Google Scholar 

  23. McCullough JD (1950) J Am Chem Soc 72:1386–1390

    Article  CAS  Google Scholar 

  24. Fernandez-Garcia M, Martinez-Arias A, Hanson JC, Rodriguez JA (2004) Chem Rev 104:4063–4104

    Article  CAS  Google Scholar 

  25. Matovic B, Dukic J, Devecerski A, Boskovic S, Ninic M, Dohcevic-Mitrovic Z (2008) Sci Sinter 40:63–68

    Article  CAS  Google Scholar 

  26. Senanayake SD, Waterhouse GIN, Chan ASY, Madey TE, Mullins DR, Idriss H (2007) J Phys Chem C 111:7963–7970

    Article  CAS  Google Scholar 

  27. Senanayake SD, Idriss H (2006) Surf Sci Spectra 13:72–80 published in 2007

    Google Scholar 

  28. Senanayake SD, Waterhouse GIN, Chan ASY, Madey TE, Mullins DR, Idriss H (2007) Catal Today 120:151–157

    Article  CAS  Google Scholar 

  29. Senanayake SD, Waterhouse GIN, Madey TE, Idriss H (2005) Langmuir 21:11141–11145

    Article  CAS  Google Scholar 

  30. Chong SV, Barteau MA, Idriss H (2001) Surf Sci Spectra 8:297–302; published in 2003

    Google Scholar 

  31. Chong SV, Barteau MA, Idriss H (2000) Catal Today 63:283

    Article  CAS  Google Scholar 

  32. Madhavaram H, Buchanan P, Idriss H (1997) J Vac Sci Technol 15:1685–1691

    CAS  Google Scholar 

  33. Allen GC, Tempest PA, Tyler JW (1988) J Chem Soc Faraday Trans I 84:4049–4059

    Article  CAS  Google Scholar 

  34. Manner JWL, Lloyd A, Pafett MT (1999) J Nucl Mater 275:37–46

    Article  CAS  Google Scholar 

  35. Gouder T (1997) Surf Sci 382:26–34

    Article  CAS  Google Scholar 

  36. Ilton ES, Bagus PS (2011) Surf Interf Anal 43:1549–1560

    Article  CAS  Google Scholar 

  37. Van den Berghe S, Miserque F, Gouder T, Gaudreau B, Verwerft M (2001) J Nucl Mater 294:168–174

    Article  Google Scholar 

  38. Idriss H, Diagne C, Hindermann JP, Kiennemann A, Barteau MA (1995) J Catal 155:219–237

    Article  CAS  Google Scholar 

  39. Sheng PY, Chiu WW, Yee A, Morrison SJ, Idriss H (2007) Catal Today 129:313–321

    Article  CAS  Google Scholar 

  40. Baron M, Bondarchuk O, Stacchiola D, Shaikhutdinov S, Freund H-J (2009) J Phys Chem C 113:6042–6049

    Article  CAS  Google Scholar 

  41. Nelin CJ, Bagus PS, Ilton ES, Chambers SA, Kuhlenbeck H, Freund H-J (2010) Int J Quantum Chem 10:2752–2764

    Article  Google Scholar 

  42. Škoda M, Cabala M, Matolínová I, Skála T, Veltruská K, Matolín V (2010) Vacuum 84:8–12

    Google Scholar 

  43. Henderson MA, Perkins CL, Engelhard MH, Thevuthasan S, Peden CHF (2003) Surf Sci 526:1–18

    Article  CAS  Google Scholar 

  44. Al-Salik Y, Al-Shankiti I, Idriss H (Submitted to J. Electron Spectroscopy and Related Phenomena)

  45. Senanayake SD, Idriss H (2004) Surf Sci 563:135–144

    Article  CAS  Google Scholar 

  46. Rundlen RE, Baenzigear C, Wilson S, McDonald RA (1948) J Am Chem Soc 70:99–105

    Google Scholar 

  47. Tilley RJD (1986) Defects crystal chemistry. Blackie, Glasgow

    Google Scholar 

  48. Madhavaram H, Idriss H (2002) J Catal 206:155–158

    Article  CAS  Google Scholar 

  49. Madhavaram H, Idriss H (2004) J Catal 224:358–369

    Article  CAS  Google Scholar 

  50. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) In: Chastain J (ed) Handbook of X-ray photoelectron spectroscopy. Perkin Elmer, Eden Prairie

    Google Scholar 

  51. Jalowieck-Duhamel L, Ponchel A, Lamonier C (1999) Int J Hydrogen Energy 24:1083–1092

    Article  Google Scholar 

  52. Wrobel G, Lamonier C, Bennani A, D’Huysser A, Kaïs Abou (1996) J Chem Soc Faraday Trans 92:2001–2009

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Idriss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Shankiti, I., Al-Otaibi, F., Al-Salik, Y. et al. Solar Thermal Hydrogen Production from Water over Modified CeO2 Materials. Top Catal 56, 1129–1138 (2013). https://doi.org/10.1007/s11244-013-0079-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0079-1

Keywords

Navigation