Skip to main content
Log in

The Impact of Electronic Charge on Catalytic Reactivity and Selectivity of Metal-Oxide Supported Metallic Nanoparticles

  • ORIGINAL PAPER
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The catalytic reactivity and selectivity of metallic nanoclusters supported on a metal-oxide can be tuned by electronic charge. In this review, different approaches for controlling the electronic properties of metallic nanoclusters and its impact on catalytic reactions are discussed. Electronic charge can transfer from the metal-oxide support to the metallic catalyst and change the metal–reactants interaction and as a consequence modify as-well the catalytic reactivity and selectivity. In other cases, the electronic properties of the metal-oxide have an active role in the catalytic process and the metal oxide can be used as a co-catalyst. Another approach is to directly change the electronic properties of the metallic catalyst. It is demonstrated that dendrimer-encapsulated metallic nanoparticles can be directly oxidized by the addition of an inorganic oxidizer to the solution phase. In this case, even while supported on inert oxides, novel catalytic reactivity and selectivity can be gained by the formation of highly oxidized metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tauster SJ, Fung SC, Garten RL (1978) J Am Chem Soc 100:170

    Article  CAS  Google Scholar 

  2. Tauster SJ (1987) Acc Chem Res 20:389

    Article  CAS  Google Scholar 

  3. Vannice MA, Garten RL (1980) J Catal 66:242

    Article  CAS  Google Scholar 

  4. Ko EI, Garten RL (1981) J Catal 68:233

    Article  CAS  Google Scholar 

  5. Tauster SJ, Fung SC, Baker RTK, Horsley JA (1981) Science 211:1121

    Article  CAS  Google Scholar 

  6. Smith JS, Thrower PA, Vannice MA (1981) J Catal 68:270

    Article  CAS  Google Scholar 

  7. Resasco DE, Haller GL (1989) Adv Catal 36:173

    Article  Google Scholar 

  8. Goodman DW (2005) Catal Lett 99:1

    Article  CAS  Google Scholar 

  9. Qiang F, Wagner T (2007) Surf Sci Rep 62:431

    Article  Google Scholar 

  10. Yoon B, Hakkinen H, Landman U, Worz AS, Antonietti JM, Abbet S, Judai K, Heiz U (2005) Science 307:403

    Article  CAS  Google Scholar 

  11. Valden M, Lai X, Goodman DW (1998) Science 281:1647

    Article  CAS  Google Scholar 

  12. Vijay A, Mills G, Metiu H (2003) J Chem Phys 118:6536

    Article  CAS  Google Scholar 

  13. Sanchez A, Abbet S, Heiz U, Schneider WD, Hakkinen H, Barnett RN, Landman U (1999) J Phys Chem A 103:9573

    Article  CAS  Google Scholar 

  14. Carrettin S, Guzman J, Corma A (2005) Angew Chem Int Ed 44:2242

    Article  CAS  Google Scholar 

  15. Carrettin S, Concepcion P, Corma A, Nieto JML, Puntes VF (2004) Angew Chem Int Ed 43:2538

    Article  CAS  Google Scholar 

  16. Guzman J, Carrettin S, Corma A (2005) J Am Chem Soc 127:3286

    Article  CAS  Google Scholar 

  17. Guzman J, Carrettin S, Fierro-Gonzalez JC, Hao Y, Gates BC, Corma A (2005) Angew Chem Int Ed 44:4778

    Article  CAS  Google Scholar 

  18. Dandekar A, Vannice MA (1999) J Catal 183:344

    Article  CAS  Google Scholar 

  19. Vannice MA (1997) Top Catal 4:241

    Article  Google Scholar 

  20. Seo H, Baker LR, Hervier A, Kim J, Whitten JL, Somorjai GA (2011) Nano Lett 11:751

    Article  CAS  Google Scholar 

  21. Baker LR, Hervier A, Seo H, Kennedy G, Komvopoulos K, Somorjai GA (2011) J Phys Chem C 115:16006

    Article  CAS  Google Scholar 

  22. Bonn M, Funk S, Hess S, Denzler DN, Stampfl C, Scheffler M, Wolf M, Ertl G (1999) Science 285:1042

    Article  CAS  Google Scholar 

  23. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269

    Article  CAS  Google Scholar 

  24. Nienhaus H, Bergh HS, Gergen B, Majumdar A, Weinberg WH, McFarland EW (1999) Phys Rev Lett 82:446

    Article  CAS  Google Scholar 

  25. Gergen B, Nienhaus H, Weinberg WH, McFarland EW (2001) Science 294:2521

    Article  CAS  Google Scholar 

  26. Park JY, Lee H, Renzas JR, Zhang Y, Somorjai GA (2008) Nano Lett 8:2388

    Article  CAS  Google Scholar 

  27. Hervier A, Renza JR, Park JY, Somorjai GA (2009) Nano Lett 9:3930

    Article  CAS  Google Scholar 

  28. Baker LR, Hervier A, Kennedy G, Somorjai GA (2012) Nano Lett 12:2554

    Article  CAS  Google Scholar 

  29. Maximoff SN, Head-Gordon MP (2009) Proc Nat Acad Sci USA 106:11460

    Article  CAS  Google Scholar 

  30. Hervier A, Baker LR, Komvopoulos K, Somorjai GA (2011) J Phys Chem C 115:22960

    Article  CAS  Google Scholar 

  31. Norskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Nature Chem 1:37

    Article  CAS  Google Scholar 

  32. Yamada Y, Tsung CK, Huang W, Huo ZY, Habas SE, Soejima T, Aliaga CE, Somorjai GA, Yang PD (2011) Nature Chem 3:372

    Article  CAS  Google Scholar 

  33. Aliaga C, Park JY, Yamada Y, Lee HS, Tsung CK, Yang PD, Somorjai GA (2009) J Phys Chem C 113:9958

    Article  Google Scholar 

  34. Gotti A, Prins R (1998) J Catal 175:302

    Article  CAS  Google Scholar 

  35. Bell AT (1995) J Mol Catal A 100:1

    Article  CAS  Google Scholar 

  36. Boffa AB, Lin C, Bell AT, Somorjai GA (1994) J Catal 149:149

    Article  CAS  Google Scholar 

  37. Boffa AB, Lin C, Bell AT, Somorjai GA (1994) Catal Lett 27:243

    Article  CAS  Google Scholar 

  38. Bracey JD, Burch R (1984) J Catal 86:384

    Article  CAS  Google Scholar 

  39. Baker LR, Kennedy G, Van Spronsen M, Hervier A, Cai X, Chen S, Wang LW, Somorjai GA (2012) J Am Chem Soc 134:14208

    Article  CAS  Google Scholar 

  40. Gross E, Krier JM, Heinke L, Somorjai GA (2012) Top Catal 55:13

    Article  CAS  Google Scholar 

  41. Kliewer CJ, Aliaga C, Bieri M, Huang W, Tsung CK, Yang PD, Somorjai GA (2010) J Am Chem Soc 132:13088

    Article  CAS  Google Scholar 

  42. Prieto G, Concepcion P, Martinez A, Mendoza E (2011) J Catal 280:274

    Article  CAS  Google Scholar 

  43. Huang WY, Liu JHC, Alayoglu P, Li YM, Witham CA, Tsung CK, Toste FD, Somorjai GA (2010) J Am Chem Soc 132:16771

    Article  CAS  Google Scholar 

  44. Li YM, Liu JHC, Witham CA, Huang WY, Marcus MA, Fakra SC, Alayoglu P, Zhu ZW, Thompson CM, Arjun A, Lee K, Gross E, Toste FD, Somorjai GA (2011) J Am Chem Soc 133:13527

    Article  CAS  Google Scholar 

  45. Witham CA, Huang WY, Tsung CK, Kuhn JN, Somorjai GA, Toste FD (2010) Nature Chem 2:36

    Article  CAS  Google Scholar 

  46. Gross E, Liu JH, Toste FD, Somorjai GA (2012) Nature Chem 4:947

    Article  CAS  Google Scholar 

  47. Gross E, Liu JH, Alayoglu S, Marcus MA, Fakra SC, Toste FD, Somorjai GA (2013) J Am Chem Soc 135:3881

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabor A. Somorjai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, E., Somorjai, G.A. The Impact of Electronic Charge on Catalytic Reactivity and Selectivity of Metal-Oxide Supported Metallic Nanoparticles. Top Catal 56, 1049–1058 (2013). https://doi.org/10.1007/s11244-013-0069-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0069-3

Keywords

Navigation