Skip to main content
Log in

Building Bridges in Catalysis Science. Monodispersed Metallic Nanoparticles for Homogeneous Catalysis and Atomic Scale Characterization of Catalysts Under Reaction Conditions

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The reactivity of small (<1.5 nm), highly oxidized metallic nanoparticles and the utilization of Sum Frequency Generation spectroscopy (SFG) and Scanning Tunneling Microscopy (STM) for investigations of catalysts under reaction conditions are discussed in this review paper. Batch and flow reactor studies were carried out using highly oxidized 40 atom clusters (Pt, Pd and Rh) to measure reaction rate and product distribution of electrophilic reactions, using toluene as a solvent. These heterogeneous catalysts show reactivity which is similar and sometimes even higher than the homogeneous catalysts. The combination of an in situ SFG and STM measurements facilitate a detection of the surface structure and reaction intermediates under reaction conditions. While the STM detects the surface reconstruction and the mobility of products and reactants molecules, the SFG can correlate the reactivity and more importantly the selectivity, to the active surface intermediates. The recent developments in these two research areas are detailed in this review paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3
Scheme 4
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Somorjai GA, Li Y (2010) Introduction to surface chemistry and catalysis. Wiley, New York

    Google Scholar 

  2. Narayanan R, El-Sayed M (2004) J Phys Chem B 108:8572

    Article  CAS  Google Scholar 

  3. Bhattacharjee S, Dotzauer DM, Bruening ML (2009) J Am Chem Soc 131:3601

    Article  CAS  Google Scholar 

  4. Daniel MC, Astruc D (2004) Chem Rev 104:293

    Article  CAS  Google Scholar 

  5. Kasemo B, Johansson S, Persson H, Thormahlen P, Zhdanov VP (2000) Top Catal 13:43

    Article  CAS  Google Scholar 

  6. Tsung CK, Kuhn JN, Huang W, Aliaga C, Hung L, Somorjai GA, Yang P (2009) J Am Chem Soc 131:5816

    Article  CAS  Google Scholar 

  7. Kuhn JN, Huang W, Tsung CK, Zhang Y, Somorjai GA (2008) J Am Chem Soc 130:14026

    Article  CAS  Google Scholar 

  8. Astruc D, Lu F, Aranzaes JR (2005) Angew Chem Int Ed 44:7852

    Article  CAS  Google Scholar 

  9. Scott RWJ, Wilson OM, Crooks RM (2005) J Phys Chem B 109:692

    Article  CAS  Google Scholar 

  10. Balint I, Miyazaki A, Aika K (2003) J Catal 220:74

    Article  CAS  Google Scholar 

  11. Yamamoto K, Imaoka T, Chun WJ, Enoki O, Katoh H, Takenaga M, Sonoi A (2009) Nat Chem 1:397

    Article  CAS  Google Scholar 

  12. Satoh N, Nakashima T, Kamikura K, Yamamoto K (2008) Nat Nano 3:106

    Article  CAS  Google Scholar 

  13. Huang W, Kuhn JN, Tsung CK, Zhang Y, Habas SE, Yang P, Somorjai GA (2008) Nano Lett 8:2027

    Article  CAS  Google Scholar 

  14. Kono K, Murakami E, Hiranaka Y, Yuba E, Kojima C, Harada A, Sakurai K (2011) Angew Chem Int Ed 50:6332

    Article  CAS  Google Scholar 

  15. Borodko Y, Thompson CM, Huang W, Yildiz HB, Frei H, Somorjai GA (2011) J Phys Chem C 115:4757

    Article  CAS  Google Scholar 

  16. Zaera F, Joyner RW (2008) Top Catal 48:1

    Article  Google Scholar 

  17. Witham CA, Huang WY, Tsung CK, Kuhn JN, Somorjai GA, Toste FD (2010) Nat Chem 2:36

    Article  CAS  Google Scholar 

  18. Huang WY, Liu JHC, Alayoglu P, Li Y, Witham CA, Tsung CK, Toste FD, Somorjai GA (2010) J Am Chem Soc 132:16771

    Article  CAS  Google Scholar 

  19. Li Y, Liu J, Witham CA, Huang W, Marcus MA, Fakra SC, Alayoglu P, Zhu Z, Thompson CM, Arjun A, Lee K, Gross E, Toste FD, Somorjai GA (2011) J Am Chem Soc 134:13527

    Article  Google Scholar 

  20. Lambert AG, Davies PB, Neivandt D (2005) Appl Spec Rev 40:103

    Article  CAS  Google Scholar 

  21. Tang DC, Hwang KS, Salmeron M, Somorjai GA (2004) J Phys Chem B 108:13300

    Article  CAS  Google Scholar 

  22. Cremer PS, Su X, Shen YR, Somorjai GA (1996) J Am Chem Soc 118:2942

    Article  CAS  Google Scholar 

  23. Yang M, Somorjai GA (2004) J Am Chem Soc 126:7698

    Article  CAS  Google Scholar 

  24. Marsh AL, Somorjai GA (2005) Top Catal 34:121

    Article  CAS  Google Scholar 

  25. Yang M, Chou KC, Somorjai GA (2003) J Phys Chem B 107:5267

    Article  CAS  Google Scholar 

  26. Su XC, Kung KY, Lahtinen J, Shen YR, Somorjai GA (1999) J Mol Cat A 141:9

    Article  CAS  Google Scholar 

  27. Rioux RM, Hsu BB, Grass ME, Song H, Somorjai GA (2008) Catal Lett 126:10

    Article  CAS  Google Scholar 

  28. Tao F, Dag S, Wang LW, Liu Z, Butcher DR, Bluhm H, Salmeron M, Somorjai GA (2010) Science 327:850

    Article  CAS  Google Scholar 

  29. Tao F, Dag S, Wang LW, Liu Z, Butcher DR, Salmeron M, Somorjai GA (2009) Nano Lett 9:2167

    Article  CAS  Google Scholar 

  30. Batteas JD, Dunphy JC, Somorjai GA, Salmeron M (1996) Phys Rev Lett 77:534

    Article  CAS  Google Scholar 

  31. Pearl TP, Sibener SJ (2001) J Chem Phys 115:1916

    Article  CAS  Google Scholar 

  32. Bratlie KM, Komvopoulos K, Somorjai GA (2008) J Phys Chem C 112:11865

    Article  CAS  Google Scholar 

  33. Sharma AK, Josephson GB, Camaioni DM, Goheen SC (2000) Env Sci Tech 34:2267

    Article  CAS  Google Scholar 

  34. Borodko Y, Ager JW III, Marti GE, Song H, Niesz K, Somorjai GA (2005) J Phys Chem B 109:17386

    Article  CAS  Google Scholar 

  35. Aliaga C, Park JY, Yamada Y, Lee HS, Tsung CK, Yang PD, Somorjai GA (2009) J Phys Chem C 113:6150

    Article  CAS  Google Scholar 

  36. Siffalovic P, Chitu L, Majkova E, Vegso K, Jergel M, Luby S, Capek I, Satka A, Maier GA, Keckes J, Timmann A, Roth SV (2010) Langmuir 26:5451

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabor A. Somorjai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, E., Krier, J.M., Heinke, L. et al. Building Bridges in Catalysis Science. Monodispersed Metallic Nanoparticles for Homogeneous Catalysis and Atomic Scale Characterization of Catalysts Under Reaction Conditions. Top Catal 55, 13–23 (2012). https://doi.org/10.1007/s11244-012-9780-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9780-8

Keywords

Navigation