Skip to main content
Log in

The Effect of Thermal Pre-Treatment on Structure, Composition, Basicity and Catalytic Activity of Mg/Al Mixed Oxides

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The goal of this work is to study the effect of thermal pre-treatment of Mg/Al mixed oxides (450–1,050 °C) on their structure, basicity and catalytic activity in transesterification of rapeseed oil. The catalytic activity of Mg/Al catalysts was shown to depend not only on the amount of basic sites, but also on crystallite size of MgO, specific surface area and population of medium/strong basic sites. Moreover, high stability of Mg/Al-550 was established by re-using the catalyst four times. It was associated with negligible magnesium leaching from the solid catalyst to liquid phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Corma A, Iborra S, Miquel S, Primo J (1998) J Catal 173:315

    Article  CAS  Google Scholar 

  2. Liu Y, Lotero E, Goodwin JG, Mo X (2007) Appl Catal 331:138

    Article  CAS  Google Scholar 

  3. Abello S, Medina F, Tichit D, Perez-Ramirez J, Sueiras JE, Salagre P, Cesteros Y (2007) Appl Catal B 70:577

    Article  CAS  Google Scholar 

  4. Rao KK, Gravelle M, Valente JS, Figueras F (1998) J Catal 173:115

    Article  CAS  Google Scholar 

  5. Climent MJ, Corma A, Iborra S, Primo J (1995) J Catal 151:60

    Article  CAS  Google Scholar 

  6. Corma A, Fornes V, Martinaranda RM, Rey F (1992) J Catal 134:58

    Article  CAS  Google Scholar 

  7. Prescott HA, Li ZJ, Kemnitz E, Trunschke A, Deutsch J, Lieske H, Auroux A (2005) J Catal 234:119

    Article  CAS  Google Scholar 

  8. Velu S, Swamy CS (1994) Appl Catal 119:241

    Article  CAS  Google Scholar 

  9. Garcia-Sancho C, Moreno-Tost R, Merida-Robles JM, Santamaria-Gonzalez J, Jimenez-Lopez A, Torres PM (2011) Catal Today 167:84

    Article  CAS  Google Scholar 

  10. Kustrowski P, Chmielarz L, Bozek E, Sawalha M, Roessner F (2004) Mater Res Bull 39:263

    Article  CAS  Google Scholar 

  11. Alvarez MG, Chimentao RJ, Figueras F, Medina F (2012) Appl Clay Sci 58:16

    Article  CAS  Google Scholar 

  12. Diez VK, Apesteguia CR, Di Cosimo JI (2003) J Catal 215:220

    Article  CAS  Google Scholar 

  13. Silva CCCM, Ribeiro NFP, Souza MMVM, Aranda DAG (2010) Fuel Process Technol 91:205

    Article  CAS  Google Scholar 

  14. Veloso CO, Perez CN, de Souza BM, Lima EC, Dias AG, Monteiro JLF, Henriques CA (2008) Microporous Mesoporous Mater 107:23

    Article  CAS  Google Scholar 

  15. Di Cosimo JI, Diez VK, Xu M, Iglesia E, Apesteguia CR (1998) J Catal 178:499

    Article  Google Scholar 

  16. Prinetto F, Ghiotti G, Durand R, Tichit D (2000) J Phys Chem B 104:11117

    Article  CAS  Google Scholar 

  17. Shen JY, Tu M, Hu C (1998) J Solid State Chem 137:295

    Article  CAS  Google Scholar 

  18. Xie WL, Peng H, Chen LG (2006) J Mol Catal a-Chem 246:24

    Article  CAS  Google Scholar 

  19. Kim MJ, Park SM, Chang DR, Seo G (2010) Fuel Process Technol 91:618

    Article  CAS  Google Scholar 

  20. Alvarez MG, Segarra AM, Contreras S, Sueiras JE, Medina F, Figueras F (2010) Chem Eng J 161:340

    Article  CAS  Google Scholar 

  21. Di Cosimo JI, Apesteguia CR, Gines MJL, Iglesia E (2000) J Catal 190:261

    Article  Google Scholar 

  22. Sree R, Babu NS, Prasad PSS, Lingaiah N (2009) Fuel Process Technol 90:152

    Article  CAS  Google Scholar 

  23. Ma FR, Hanna MA (1999) Bioresource Technol 70:1

    Article  CAS  Google Scholar 

  24. Kubičková I, Kubička D (2010) Waste Biomass Valoris 1:293

    Article  Google Scholar 

  25. Benjapornkulaphong S, Ngamcharussrivichai C, Bunyakiat K (2009) Chem Eng J 145:468

    Article  CAS  Google Scholar 

  26. Gryglewicz S (1999) Bioresource Technol 70:249

    Article  CAS  Google Scholar 

  27. Yang ZQ, Xie WL (2007) Fuel Process Technol 88:631

    Article  CAS  Google Scholar 

  28. Queiroz RM, Pires LHO, de Souza RCP, Zamian JR, de Souza AG, da Rocha GN, da Costa CEF (2009) J Therm Anal Calorim 97:163

    Article  CAS  Google Scholar 

  29. Lopez DE, Goodwin JG, Bruce DA, Lotero E (2005) Appl Catal 295:97

    Article  CAS  Google Scholar 

  30. Xie WL, Li HT (2006) J Mol Catal 255:1

    Article  CAS  Google Scholar 

  31. Zeng HY, Feng Z, Deng X, Li YQ (2008) Fuel 87:3071

    Article  CAS  Google Scholar 

  32. Di Serio M, Ledda M, Cozzolino M, Minutillo G, Tesser R, Santacesaria E (2006) Ind Eng Chem Res 45:3009

    Article  Google Scholar 

  33. Parida K, Das J (2000) J Mol Catal 151:185

    Article  CAS  Google Scholar 

  34. Tittabutt T, Trakarnpruk W (2008) Ind Eng Chem Res 47:2176

    Article  Google Scholar 

  35. Antunes WM, Veloso CD, Henriques CA (2008) Catal Today 133:548

    Article  Google Scholar 

  36. Winter F, van Dillen AJ, de Jong KP (2005) Chem Commun. doi:10.1039/B506173Cv

    Google Scholar 

  37. Jenkins R, Snyder RL (1996) John Wiley & Sons Inc., New York

  38. Cavani F, Trifiro F, Vaccari A (1991) Catal Today 11:173

    Article  CAS  Google Scholar 

  39. Mackenzie KJD, Meinhold RH, Sherriff BL, Xu Z (1993) J Mater Chem 3:1263

    Article  CAS  Google Scholar 

  40. Constantino VRL, Pinnavaia TJ (1995) Inorg Chem 34:883

    Article  CAS  Google Scholar 

  41. Reichle WT, Kang SY, Everhardt DS (1986) J Catal 101:352

    Article  CAS  Google Scholar 

  42. Bolognini M, Cavani F, Scagliarini D, Flego C, Perego C, Saba M (2002) Catal Today 75:103

    Article  CAS  Google Scholar 

  43. Grabowska H, Zawadzki M, Syper L, Mista W (2005) Appl Catal 292:208

    Article  CAS  Google Scholar 

  44. Zeng HY, Deng X, Wang YJ, Liao KB (2009) AIChE J 55:1229

    Article  CAS  Google Scholar 

  45. Brito A, Borges ME, Garin M, Hernandez A (2009) Energy Fuel 23:2952

    Article  CAS  Google Scholar 

  46. Gomes JFP, Puna JFB, Goncalves LM, Bordado JCM (2011) Energy 36:6770

    Article  CAS  Google Scholar 

  47. Deng X, Fang Z, Liu YH, Yu CL (2011) Energy 36:777

    Article  CAS  Google Scholar 

  48. Navajas A, Campo I, Arzamendi G, Hernandez WY, Bobadilla LF, Centeno MA, Odriozola JA, Gandia LM (2010) Appl Catal B 100:299

    Article  CAS  Google Scholar 

  49. Shumaker JL, Crofcheck C, Tackett SA, Santillan-Jimenez E, Morgan T, Ji Y, Crocker M, Toops TJ (2008) Appl Catal B 82:120

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank to the Czech Science Foundation (Project No. P106/11/0773). Ivana Troppová also thanks to ESF and the Ministry of Education, Youth and Sports of the Czech Republic, Project CZ.1.07/2.3.00/30.0058 “Development of Research Teams at the University of Pardubice”. At VUAnCh, the project is being carried out in the UniCRE centre (CZ.1.05/2.1.00/03.0071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libor Čapek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čapek, L., Kutálek, P., Smoláková, L. et al. The Effect of Thermal Pre-Treatment on Structure, Composition, Basicity and Catalytic Activity of Mg/Al Mixed Oxides. Top Catal 56, 586–593 (2013). https://doi.org/10.1007/s11244-013-0008-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0008-3

Keywords

Navigation