Skip to main content
Log in

Shape and Size-Tailored Pd Nanocrystals to Study the Structure Sensitivity of 2-Methyl-3-butyn-2-ol Hydrogenation: Effect of the Stabilizing Agent

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Uniform Pd nanocrystals of cubic, octahedral and cube-octahedral shapes were synthesized via a solution-phase method using two stabilizers: poly (vinyl pyrrolidone) (PVP) and di-2-ethylhexylsulfoccinate (AOT) and tested in the hydrogenation of 2-methyl-3-butyn-2-ol. The AOT-stabilized Pd nanocrystals were found to be an order of magnitude more active, but less selective than those stabilized by PVP. This could be attributed to a stronger interaction of PVP with surface Pd by adsorbed N-containing groups. The results obtained were rationalized applying a two-site Langmuir–Hinshelwood kinetic model that allowed predicting 3–4 nm cubic or octahedral nanocrystals stabilized by AOT as the optimum active phase ensuring the highest production rate of target MBE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boudart M (1995) Chem Rev 95:661–666

    Article  CAS  Google Scholar 

  2. Semagina N, Kiwi-Minsker L (2009) Catal Rev 51:147–217

    Article  CAS  Google Scholar 

  3. Jia CJ, Schuth F (2011) Phys Chem Chem Phys 13:2457–2487

    Article  CAS  Google Scholar 

  4. Boitiaux JP, Cosyns J, Robert E (1987) Appl Catal 32:145–168

    Article  CAS  Google Scholar 

  5. Molnar A, Sarkany A, Varga M (2001) J Mol Catal A 173:185–221

    Article  CAS  Google Scholar 

  6. Chen B, Dingerdissen U, Krauter JGE, Rotgerink HGJL, Mobus K, Ostgard DJ, Panster P, Riermeier TH, Seebald S, Tacke T, Trauthwein H (2005) Appl Catal A 280:17–46

    Article  CAS  Google Scholar 

  7. Gunter PLJ, Niemantsverdriet JW, Ribeiro FH, Somorjai GA (1997) Catal Rev 39:77–168

    Article  CAS  Google Scholar 

  8. Imbihl R, Ertl G (1995) Chem Rev 95:697–733

    Article  CAS  Google Scholar 

  9. Zaera F (2001) Prog Surf Sci 69:1–98

    Article  CAS  Google Scholar 

  10. Freund HJ (2008) Top Catal 48:137–144

    Article  CAS  Google Scholar 

  11. Silvestre-Albero J, Rupprechter G, Freund HJ (2006) J Catal 240:58–65

    Article  CAS  Google Scholar 

  12. Silvestre-Albero J, Rupprechter G, Freund HJ (2006) Chem Commun 80–82

  13. Tao AR, Habas S, Yang PD (2008) Small 4:310–325

    Article  CAS  Google Scholar 

  14. Xia Y, Xiong YJ, Lim B, Skrabalak SE (2009) Angew Chem 48:60–103

    CAS  Google Scholar 

  15. Habas SE, Lee H, Radmilovic V, Somorjai GA, Yang P (2007) Nat Mater 6:692–697

    Article  CAS  Google Scholar 

  16. Quintanilla A, Butselaar-Orthlieb VCL, Kwakernaak C, Sloof WG, Kreutzer MT, Kapteijn F (2010) J Catal 271:104–114

    Article  CAS  Google Scholar 

  17. Piccolo L, Valcarcel A, Bausach M, Thomazeau C, Uziob D, Berhault G (2008) Phys Chem Chem Phys 10:5504–5506

    Article  CAS  Google Scholar 

  18. Wilson OM, Knecht MR, Garcia-Martinez JC, Crooks RM (2006) J Am Chem Soc 128:4510–4511

    Article  CAS  Google Scholar 

  19. Zakarina NA, Zakumbaeva GD, Toktabaeva NF, Dyusenbina BB, Litvyakova EN, Kuanyshev AS (1983) Kinet Catal 24:733–737

    Google Scholar 

  20. Zakumbaeva GD, Zakarina NA, Naidin VA, Dostiyarov AM, Toktabaeva NF, Litvyakova EN (1983) Kinet Catal 24:379–383

    Google Scholar 

  21. Semagina N, Kiwi-Minsker L (2009) Catal Lett 127:334–338

    Article  CAS  Google Scholar 

  22. Semagina N, Renken A, Laub D, Kiwi-Minsker L (2007) J Catal 246:308–314

    Article  CAS  Google Scholar 

  23. Crespo-Quesada M, Yarulin A, Jin M, Xia Y, Kiwi-Minsker L (2011) J Am Chem Soc 133:12787–12794

    Article  CAS  Google Scholar 

  24. Lim B, Jiang MJ, Tao J, Camargo PHC, Zhu YM, Xia YN (2009) Adv Funct Mater 19:189–200

    Article  CAS  Google Scholar 

  25. Jin M, Liu H, Zhang H, Xie Z, Liu J, Xia Y (2011) Nano Res 4:83–91

    Article  CAS  Google Scholar 

  26. Bond GC (1991) Chem Soc Rev 20:441–475

    Article  CAS  Google Scholar 

  27. Lee H, Habas SE, Kweskin S, Butcher D, Somorjai GA, Yang PD (2006) Angew Chem 45:7824–7828

    Article  CAS  Google Scholar 

  28. Hub S, Hilaire L, Touroude R (1988) Appl Catal 36:307–322

    Article  CAS  Google Scholar 

  29. Nijhuis TA, van Koten G, Kaptejn F, Moulijn JA (2003) Catal Today 79–80:315–321

    Article  Google Scholar 

  30. Sulman EM (1994) Rus Chem Rev 63:923–936

    Article  Google Scholar 

  31. Mallat T, Baiker A (2000) Appl Catal A 200:3–22

    Article  CAS  Google Scholar 

  32. Boitiaux JP, Cosyns J, Vasudevan S (1985) Appl Catal 15:317–326

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lioubov Kiwi-Minsker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiwi-Minsker, L., Crespo-Quesada, M. Shape and Size-Tailored Pd Nanocrystals to Study the Structure Sensitivity of 2-Methyl-3-butyn-2-ol Hydrogenation: Effect of the Stabilizing Agent. Top Catal 55, 486–491 (2012). https://doi.org/10.1007/s11244-012-9815-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9815-1

Keywords

Navigation