Skip to main content
Log in

Optimal Design of A CPO-Reformer of Light Hydrocarbons with Honeycomb Catalyst: Effect of Frontal Heat Dispersions on the Temperature Profiles

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

This paper extends a previous investigation on the thermal behavior of CH4-CPO reformers with honeycomb catalysts. Modeling and experimental studies on the short contact time catalytic partial oxidation (CPO) of CH4 to syngas from our and from other groups have shown that Rh-catalysts rapidly deactivate at the very high temperatures, close to 1000 °C, that establish in the inlet zone of the reactor. We have previously shown that a significant reduction of the surface hot-spot temperature can be obtained by properly designing the catalyst: beneficial effects are observed at increasing opening of the honeycomb channels, which decreases the rate of O2 inter-phase mass transfer, and at increasing catalyst activity, which promotes the rate of the endothermic reactions. In this work, we explore the effect of the reactor configuration, namely the effect of heat dispersion from the glowing front face of the monolith. Three reactor configurations were compared in CH4-CPO experiments: (i) a configuration with perfect continuity between the front heat shield (FHS) and the catalytic module, which behaved close to an ideal adiabatic reactor, (ii) a configuration where the FHS was separated from the catalytic monolith and (iii) a configuration where the FHS was at large distance from the catalytic module. State of the art experimental tools, including the spatially resolved measurement of temperature and concentration profiles were used to characterize the thermal behavior of the various configurations. Detailed kinetic modeling supported the analysis of data. The results showed that, at the expense of a small loss of thermal efficiency, a very moderate loss of performance in terms of conversion and selectivity, but, remarkably, an important reduction of the surface inlet temperatures were achieved. Preliminary experiments with propane/air mixtures suggest that the adoption of a moderately dispersive reactor can represent a promising solution for the stable operation of catalytic units treating heavier fuels than methane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hickman DA, Schmidt LD (1992) J Catal 138:267

    Article  CAS  Google Scholar 

  2. Hickman DA, Haupfear EA, Schmidt LD (1993) Catal Lett 17:223

    Article  CAS  Google Scholar 

  3. Groppi G, Beretta A, Tronconi E (2006) In: Cybulski A Moulijn JA (eds) Structured catalysts and reactors, 2nd edn. CRC Press, Hoboken

  4. York APE, Xiao TC, Green MLH, Claridge JB (2007) Catal Rev Sci Eng 49:511

    Article  CAS  Google Scholar 

  5. Al-Harbi M, Epling WS (2009) Appl Catal B 89:315

    Article  CAS  Google Scholar 

  6. Choudhary TV, Choudhary VR (2008) Angew Chem Int Edit 47:1828

    Article  CAS  Google Scholar 

  7. Jones G, Jakobsen JG, Shim SS, Kleis J, Andersson MP, Rossmeisl J, Abild-Pedersen F, Bligaard T, Helveg S, Hinnemann B, Rostrup-Nielsen JR, Chorkendorff I, Sehested J, Nørskov JK (2008) J Catal 259:147

    Article  CAS  Google Scholar 

  8. Heitnes K, Lindberg S, Rokstad OA, Holmen A (1995) Catal Today 24:211

    Article  CAS  Google Scholar 

  9. Aartun I, Venvik HJ, Holmen A, Pfeifer P, Görke O, Schubert K (2005) Catal Today 110:98

    Article  CAS  Google Scholar 

  10. Basini L, Guarinoni A, Aragno A (2000) J Catal 190:284

    Article  CAS  Google Scholar 

  11. Basini L, Aasberg-Petersen K, Guarinoni A, Østberg M (2001) Catal Today 64:9

    Article  CAS  Google Scholar 

  12. Horn R, Degenstein NJ, Williams KA, Schmidt LD (2006) Catal Lett 110:169

    Article  CAS  Google Scholar 

  13. Horn R, Williams KA, Degenstein NJ, Schmidt LD (2006) J Catal 242:92

    Article  CAS  Google Scholar 

  14. Horn R, Williams KA, Degenstein NJ, Bitsch-Larsen A, Dalle Nogare D, Tupy SA, Schmidt LD (2007) J Catal 249:380

    Article  CAS  Google Scholar 

  15. Bitsch-Larsen A, Horn R, Schmidt LD (2008) Appl Catal A 348:165

    Article  CAS  Google Scholar 

  16. Donazzi A, Michael BC, Schmidt LD (2008) J Catal 260:270

    Article  CAS  Google Scholar 

  17. Michael BC, Donazzi A, Schmidt LD (2009) J Catal 265:117

    Article  CAS  Google Scholar 

  18. Schwiedernoch R, Tischer S, Correa C, Deutschmann O (2003) Chem Eng Sci 58:633

    Article  CAS  Google Scholar 

  19. Bizzi M, Saracco G, Schwiedernoch R, Deutschmann O (2004) AICHE J 50:1289

    Article  CAS  Google Scholar 

  20. Maestri M, Beretta A, Groppi G, Tronconi E, Forzatti P (2005) Catal Today 105:709

    Article  CAS  Google Scholar 

  21. Beretta A, Groppi G, Lualdi M, Tavazzi I, Forzatti P (2009) Ind Eng Chem Res 48:3825

    Article  CAS  Google Scholar 

  22. Dalle Nogare D, Degenstein NJ, Horn R, Canu P, Schmidt LD (2008) J Catal 258:131

    Article  CAS  Google Scholar 

  23. Dalle Nogare D, Degenstein NJ, Horn R, Canu P, Schmidt LD (2011) J Catal 277:134

    Article  CAS  Google Scholar 

  24. Donazzi A, Maestri M, Michael BC, Beretta A, Forzatti P, Groppi G, Tronconi E, Schmidt LD, Vlachos DG (2010) J Catal 275:270

    Article  CAS  Google Scholar 

  25. Tavazzi I, Beretta A, Groppi G, Maestri M, Tronconi E, Forzatti P (2007) Catal Today 129:372

    Article  CAS  Google Scholar 

  26. Ding S, Yang Y, Jin Y, Cheng Y (2009) Ind Eng Chem Res 48:2878

    Article  CAS  Google Scholar 

  27. Cimino S, Torbati R, Lisi L, Russo G (2009) Appl Catal A 360:43

    Article  CAS  Google Scholar 

  28. Cimino S, Lisi L, Russo G, Torbati R (2010) Catal Today 154:283

    Article  CAS  Google Scholar 

  29. Bitsch-Larsen A, Degenstein NJ, Schmidt LD (2008) Appl Catal B 78:364

    Article  CAS  Google Scholar 

  30. Ding S, Cheng Y, Cheng Y (2010) Ind Eng Chem Res 50:856

    Article  Google Scholar 

  31. Beretta A, Donazzi A, Livio D, Maestri M, Groppi G, Tronconi E, Forzatti P (2011) Catal Today. doi:10.1016/j.cattod.2011.03.081

  32. Valentini M, Groppi G, Cristiani C, Levi M, Tronconi E, Forzatti P (2001) Catal Today 69:307

    Article  CAS  Google Scholar 

  33. Beretta A, Donazzi A, Groppi G, Forzattl P, Dal Santo V, Sordelli L, De Grandi V, Psaro R (2008) Appl Catal B 83:96

    Article  CAS  Google Scholar 

  34. Maestri M, Vlachos DG, Beretta A, Groppi G, Tronconi E (2009) AICHE J 55:993

    Article  CAS  Google Scholar 

  35. Granata S, Faravelli T, Ranzi E (2003) Combust Flame 132:533

    Article  CAS  Google Scholar 

  36. Shah RK, London AL (1978) Laminar flow forced convection in ducts. Academic Press, New York

    Google Scholar 

  37. Lee ST, Aris R (1977) Chem Eng Sci 32:827

    Article  CAS  Google Scholar 

  38. Aartun I, Silberova B, Venvik H, Pfeifer P, Görke O, Schubert K, Holmen A (2005) Catal Today 105:469

    Article  CAS  Google Scholar 

  39. Donazzi A, Livio D, Maestri M, Beretta A, Groppi G, Tronconi E, Forzatti P (2011) Angew Chem Int Edit 50:3943

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Galen B. Fischer (University of Michigan) for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Beretta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Livio, D., Donazzi, A., Beretta, A. et al. Optimal Design of A CPO-Reformer of Light Hydrocarbons with Honeycomb Catalyst: Effect of Frontal Heat Dispersions on the Temperature Profiles. Top Catal 54, 866 (2011). https://doi.org/10.1007/s11244-011-9710-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11244-011-9710-1

Keywords

Navigation