Skip to main content
Log in

Thermodynamic Study of Nucleation Effects on Vapor–Liquid Transitions Occurring in Porous Substrates

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The Kelvin equation can approximately describe the conditions required for the occurrence of capillary condensation–evaporation phenomena. Nonetheless, nucleation phenomena imply noteworthy deviations from the Kelvin prediction. Nucleation occurs in porous media during liquid–vapor transitions and this phenomenon certainly influences the appearances of adsorption–desorption isotherms. Nucleation plays indeed a capital role during capillary condensation whilst is mostly absent during capillary evaporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ΔG :

Work of droplet formation

ΔG*:

Free energy barrier associated to nucleation

\( \Updelta G_{S}^{*} \) :

Free energy required for a new phase formation in the case of heterogeneous nucleation

ΔG(V l):

Liquid phase work of formation

ΔG ij :

Free energy change due to the formation of the interface between the phases i and j

Δp*:

Critical supersaturation

C lv :

Curvature of the liquid–vapor interface

n :

Number of molecules

n*:

Number of molecules threshold for droplet formation

p :

Pressure

p l :

Liquid pressure

pv/p0:

Relative pressure

p v :

Vapor pressure

p 0 :

Vapor saturation pressure

R :

Universal gas constant

r p :

Pore size

r :

Droplet size

r*:

Critical radius

r m :

Mean radius of curvature of the liquid–vapor interphase

v l :

Molar volume of the liquid phase

T :

Temperature

β:

Wall crevice slope

δ:

Pit mouth radius

ρ:

Mean radius of curvature of a nucleation droplet

φ:

Correction factor. A real number

θ:

Contact angle at the three-phase line of contact

σlv :

Liquid–vapor surface tension

References

  1. Defay R, Prigogine I, Everett DH (1966) Surface tension and adsorption. Longmans Green & Co Ltd, Nova, London Chap XV

    Google Scholar 

  2. Fisher LR, Israelachvili JN (1979) Nature 277:548–549

    Article  CAS  Google Scholar 

  3. Parlar M, Yortsos YC (1989) Colloid Interface Sci 132(2):425–443

    Article  CAS  Google Scholar 

  4. Bories S, Prat M (2002) In: Ingham DB (ed) Transport phenomena in porous media II, Pergamon—Elsevier, Oxford, pp 276–315

  5. Everett DH, Haynes JM (1972) J Colloid Interface Sci 38:125–137

    Article  CAS  Google Scholar 

  6. Casanova F, Chiang CE, Li CP, Roshchin IV, Ruminski AM, Sailor MJ, Sculler IK (2008) EPL 81:26003

    Article  Google Scholar 

  7. Carey VP (1992) Liquid–vapor phase-change phenomena. Hemisphere Publishing Corporation, Washington Chap 5

    Google Scholar 

  8. Talanquer V (2002) J Chem Educ 79(7):877–883

    Article  CAS  Google Scholar 

  9. Gunther L (2003) Am J Phys 71(4):351–357

    Article  CAS  Google Scholar 

  10. Wilt PM (1986) J Colloid Interface Sci 112:530–538

    Article  CAS  Google Scholar 

  11. Carey VP (1992) Liquid–vapor phase-change phenomena. Hemisphere Publishing Corporation, Washington Chap 6

    Google Scholar 

  12. Ward CA, Johnson WR, Venter RD, Ho S, Forest TW, Fraser WD (1983) J Appl Phys 54(4):1833–1843

    Article  Google Scholar 

  13. Bankoff SG (1958) AIChE J 4(1):24–26

    Article  CAS  Google Scholar 

  14. Forest TW (1982) J Appl Phys 53(9):6191–6201

    Article  CAS  Google Scholar 

  15. Everett DH (1967) In: Flood EA (ed) The solid gas interface, Dekker, New York, Chap 36

  16. El-Yousfi A, Zarcone C, Bories S, Lenormand R (1991) Mécanisme de formation d’une phase gazeuse par détente d’un liquide en milieu poreux. C.R.A.S. Paris Série 2 1093–1099

  17. Domínguez A, Bories S, Prat M (2000) Int J Multiph Flow 26:1951–1979

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are given to CONACYT for the support provided under project No. 83659 “Estudio Fisicoquímico de la obtención y de las propiedades de los sólidos mesoporosos”. Thanks are also due to the SEP-PROMEP Network “Fisicoquímica de Sistemas Complejos Nanoestructurados”, Project “Estudio de Propiedades Fisicoquímicas de Sistemas Complejos Nanoestructurados. (UAM-I-CA-31 Fisicoquímica de Superficies)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando Domínguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponce, M., Domínguez, A., Esparza, J.M. et al. Thermodynamic Study of Nucleation Effects on Vapor–Liquid Transitions Occurring in Porous Substrates. Top Catal 54, 114–120 (2011). https://doi.org/10.1007/s11244-011-9651-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-011-9651-8

Keywords

Navigation