Skip to main content

Vapor Nucleation in Metastable Liquids: the Continuum Description

  • Chapter
The Surface Wettability Effect on Phase Change

Abstract

Liquid–vapor phase change is of importance across a wide spectrum of fundamental and applied disciplines. The phenomenology of vapor formation is very complex due to the large range of spatio-temporal scales involved. Here, the microscopic features of vapor embryos nucleation coexist with the macroscopic bubble dynamics. This multiscale nature of the phenomenon makes nucleation challenging both from a theoretical and experimental point of view. In this work, we aim to retrace the state of art of continuum description of liquid–vapor phase change, starting from the classical nucleation theory, which provides a basic description of the phenomenon up to the phase field description and fluctuating hydrodynamics theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antonio Tinti, Alberto Giacomello, Yaroslav Grosu, and Carlo Massimo Casciola. Intrusion and extrusion of water in hydrophobic nanopores. Proceedings of the National Academy of Sciences, 114(48):E10266–E10273, 2017.

    Google Scholar 

  2. E Cramer and W Lauterborn. Acoustic cavitation noise spectra. In Mechanics and Physics of Bubbles in Liquids, pages 209–214. Springer, 1982.

    Google Scholar 

  3. Agostino Occhicone, Giorgia Sinibaldi, Norbert Danz, Carlo Massimo Casciola, and Francesco Michelotti. Cavitation bubble wall pressure measurement by an electromagnetic surface wave enhanced pump-probe configuration. Applied Physics Letters, 114(13):134101, 2019.

    Google Scholar 

  4. Chiara Scognamiglio, Francesco Magaletti, Yaroslava Izmaylov, Mirko Gallo, Carlo Massimo Casciola, and Xavier Noblin. The detailed acoustic signature of a micro-confined cavitation bubble. Soft matter, 2018.

    Google Scholar 

  5. G Sinibaldi, A Occhicone, F Alves Pereira, D Caprini, L Marino, F Michelotti, and CM Casciola. Laser induced cavitation: Plasma generation and breakdown shockwave. Physics of Fluids, 31(10):103302, 2019.

    Google Scholar 

  6. Dimo Kashchiev. Nucleation. Elsevier, 2000.

    Google Scholar 

  7. David W Oxtoby and R Evans. Nonclassical nucleation theory for the gas–liquid transition. The Journal of chemical physics, 89(12):7521–7530, 1988.

    Google Scholar 

  8. Jürg Diemand, Raymond Angélil, Kyoko K Tanaka, and Hidekazu Tanaka. Direct simulations of homogeneous bubble nucleation: Agreement with classical nucleation theory and no local hot spots. Physical review E, 90(5):052407, 2014.

    Google Scholar 

  9. Alberto Giacomello, Simone Meloni, Marcus Müller, and Carlo Massimo Casciola. Mechanism of the cassie-wenzel transition via the atomistic and continuum string methods. The Journal of chemical physics, 142(10):104701, 2015.

    Google Scholar 

  10. Mirko Gallo, Francesco Magaletti, and Carlo Massimo Casciola. Fluctuating hydrodynamics as a tool to investigate nucleation of cavitation bubbles. International Journal of Computational Methods and Experimental Measurements, 6(2):345–357, 2017.

    Google Scholar 

  11. Mirko Gallo, Francesco Magaletti, and Carlo Massimo Casciola. Thermally activated vapor bubble nucleation: The landau-lifshitz–van der waals approach. Phys. Rev. Fluids, 3:053604, May 2018.

    Google Scholar 

  12. Mirko Gallo, Francesco Magaletti, and Carlo Massimo Casciola. Heterogeneous bubble nucleation dynamics. Journal of Fluid Mechanics, 906, 2020.

    Google Scholar 

  13. Mirko Gallo, Francesco Magaletti, Davide Cocco, and Carlo Massimo Casciola. Nucleation and growth dynamics of vapour bubbles. Journal of Fluid Mechanics, 883, 2020.

    Google Scholar 

  14. Pablo G Debenedetti. Metastable liquids: concepts and principles. Princeton University Press, 1996.

    Google Scholar 

  15. John C Angus and Cliff C Hayman. Low-pressure, metastable growth of diamond and “diamondlike” phases. Science, 241(4868):913–921, 1988.

    Google Scholar 

  16. H\_M Strong and RE Hanneman. Crystallization of diamond and graphite. The Journal of Chemical Physics, 46(9):3668–3676, 1967.

    Google Scholar 

  17. Emily B Moore and Valeria Molinero. Structural transformation in supercooled water controls the crystallization rate of ice. Nature, 479(7374):506, 2011.

    Google Scholar 

  18. Daniel M Murphy and Thomas Koop. Review of the vapour pressures of ice and supercooled water for atmospheric applications. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 131(608):1539–1565, 2005.

    Google Scholar 

  19. Sylvain Deville, Eric Maire, Guillaume Bernard-Granger, Audrey Lasalle, Agnès Bogner, Catherine Gauthier, Jérôme Leloup, and Christian Guizard. Metastable and unstable cellular solidification of colloidal suspensions. Nature materials, 8(12):966, 2009.

    Article  Google Scholar 

  20. Amy E Larsen and David G Grier. Like-charge attractions in metastable colloidal crystallites. Nature, 385(6613):230, 1997.

    Google Scholar 

  21. Joachim Heierli. Solitary fracture waves in metastable snow stratifications. Journal of Geophysical Research: Earth Surface, 110(F2), 2005.

    Google Scholar 

  22. J-P Bouchaud, ME Cates, J Ravi Prakash, and SF Edwards. Hysteresis and metastability in a continuum sandpile model. Physical review letters, 74(11):1982, 1995.

    Google Scholar 

  23. J Karl Johnson, John A Zollweg, and Keith E Gubbins. The lennard-jones equation of state revisited. Molecular Physics, 78(3):591–618, 1993.

    Google Scholar 

  24. Hendrik Anthony Kramers. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 7(4):284–304, 1940.

    Article  MathSciNet  Google Scholar 

  25. Christopher E Brennen. Cavitation and bubble dynamics. Cambridge University Press, 2013.

    Google Scholar 

  26. CA Ward, WR Johnson, RD Venter, S Ho, TW Forest, and WD Fraser. Heterogeneous bubble nucleation and conditions for growth in a liquid–gas system of constant mass and volume. Journal of Applied Physics, 54(4):1833–1843, 1983.

    Article  Google Scholar 

  27. Georg Menzl, Miguel A Gonzalez, Philipp Geiger, Frédéric Caupin, José LF Abascal, Chantal Valeriani, and Christoph Dellago. Molecular mechanism for cavitation in water under tension. Proceedings of the National Academy of Sciences, 113(48):13582–13587, 2016.

    Google Scholar 

  28. James F Lutsko. Density functional theory of inhomogeneous liquids. ii. a fundamental measure approach. The Journal of chemical physics, 128(18):184711, 2008.

    Google Scholar 

  29. James F Lutsko and Miguel A Durán-Olivencia. A two-parameter extension of classical nucleation theory. Journal of Physics: Condensed Matter, 27(23):235101, 2015.

    Google Scholar 

  30. Raymond Angélil, Jürg Diemand, Kyoko K Tanaka, and Hidekazu Tanaka. Bubble evolution and properties in homogeneous nucleation simulations. Physical review E, 90(6):063301, 2014.

    Google Scholar 

  31. Rosalind J Allen, Daan Frenkel, and Pieter Rein ten Wolde. Simulating rare events in equilibrium or nonequilibrium stochastic systems. The Journal of chemical physics, 124(2):024102, 2006.

    Google Scholar 

  32. Rosalind J Allen, Chantal Valeriani, and Pieter Rein ten Wolde. Forward flux sampling for rare event simulations. Journal of physics: Condensed matter, 21(46):463102, 2009.

    Google Scholar 

  33. Peter G Bolhuis, David Chandler, Christoph Dellago, and Phillip L Geissler. Transition path sampling: Throwing ropes over rough mountain passes, in the dark. Annual review of physical chemistry, 53(1):291–318, 2002.

    Google Scholar 

  34. Christoph Dellago and Peter G Bolhuis. Transition path sampling and other advanced simulation techniques for rare events. In Advanced Computer Simulation Approaches for Soft Matter Sciences III, pages 167–233. Springer, 2009.

    Google Scholar 

  35. Sara Marchio, Simone Meloni, Alberto Giacomello, and Carlo Massimo Casciola. Wetting and recovery of nano-patterned surfaces beyond the classical picture. Nanoscale, 2019.

    Google Scholar 

  36. James F Lutsko. Density functional theory of inhomogeneous liquids. iv. squared-gradient approximation and classical nucleation theory. The Journal of chemical physics, 134(16):164501, 2011.

    Google Scholar 

  37. F Magaletti, L Marino, and CM Casciola. Shock wave formation in the collapse of a vapor nanobubble. Physical Review Letters, 114(6):064501, 2015.

    Article  Google Scholar 

  38. Francesco Magaletti, Mirko Gallo, Luca Marino, and Carlo Massimo Casciola. Dynamics of a vapor nanobubble collapsing near a solid boundary. In Journal of Physics: Conference Series, volume 656(1), page 012012. IOP Publishing, 2015.

    Google Scholar 

  39. Francesco Magaletti, Luca Marino, and Carlo Massimo Casciola. Diffuse interface modeling of a radial vapor bubble collapse. In Journal of Physics: Conference Series, volume 656, page 012028. IOP Publishing, 2015.

    Google Scholar 

  40. Ronald Forrest Fox and George E Uhlenbeck. Contributions to non-equilibrium thermodynamics. i. theory of hydrodynamical fluctuations. Physics of Fluids (1958–1988), 13(8):1893–1902, 1970.

    Google Scholar 

  41. LD Landau and EM Lifshitz. Statistical physics, vol. 5. Course of theoretical physics, 30, 1980.

    Google Scholar 

  42. Francesco Magaletti, Anastasios Georgoulas, and Marco Marengo. Unraveling low nucleation temperatures in pool boiling through fluctuating hydrodynamics simulations. International Journal of Multiphase Flow, page 103356, 2020.

    Google Scholar 

  43. James F Lutsko. Density functional theory of inhomogeneous liquids. i. the liquid-vapor interface in lennard-jones fluids. The Journal of chemical physics, 127(5):054701, 2007.

    Google Scholar 

  44. DM Anderson, GB McFadden, and AA Wheeler. Diffuse-interface methods in fluid mechanics. Annual Review of Fluid Mechanics, 30(1):139–165, 1998.

    Article  MathSciNet  Google Scholar 

  45. Francesco Dell’Isola, Henri Gouin, Pierre Seppecher, et al. Radius and surface tension of microscopic bubbles by second gradient theory. Comptes Rendus de l Académie des Sciences-Series IIB-Mechanics, 320, 1995.

    Google Scholar 

  46. D Jamet, O Lebaigue, N Coutris, and JM Delhaye. The second gradient method for the direct numerical simulation of liquid–vapor flows with phase change. Journal of Computational Physics, 169(2):624–651, 2001.

    Article  MathSciNet  Google Scholar 

  47. Weinan E, Weiqing Ren, and Eric Vanden-Eijnden. Simplified and improved string method for computing the minimum energy paths in barrier-crossing events. Journal of Chemical Physics, 126(16):164103, 2007.

    Google Scholar 

  48. Weiqing Ren. Wetting transition on patterned surfaces: transition states and energy barriers. Langmuir, 30(10):2879–2885, 2014.

    Article  Google Scholar 

  49. Albert Einstein. Theorie der opaleszenz von homogenen flüssigkeiten und flüssigkeitsgemischen in der nähe des kritischen zustandes. Annalen der Physik, 338(16):1275–1298, 1910.

    Article  Google Scholar 

  50. Albert Einstein. Investigations on the Theory of the Brownian Movement. Courier Corporation, 1956.

    Google Scholar 

  51. Rouslan L Stratonovich. Nonlinear nonequilibrium thermodynamics I: linear and nonlinear fluctuation-dissipation theorems, volume 57. Springer Science & Business Media, 2012.

    Google Scholar 

  52. Sybren Ruurds De Groot and Peter Mazur. Non-equilibrium thermodynamics. Courier Dover Publications, 2013.

    Google Scholar 

  53. Francesco Magaletti, Mirko Gallo, Luca Marino, and Carlo Massimo Casciola. Shock-induced collapse of a vapor nanobubble near solid boundaries. International Journal of Multiphase Flow, 84:34–45, 2016.

    Google Scholar 

  54. Giuseppe Da Prato. Kolmogorov equations for stochastic PDEs. Birkhäuser, 2012.

    Google Scholar 

  55. Brian R. Novak, Edward J. Maginn, and Mark J. McCready. Comparison of heterogeneous and homogeneous bubble nucleation using molecular simulations. Phys. Rev. B, 75:085413, 2007.

    Google Scholar 

  56. Milton Blander and Joseph L Katz. Bubble nucleation in liquids. AIChE Journal, 21(5):833–848, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Gallo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Gallo, M., Magaletti, F., Abbondanza, D., Casciola, C.M. (2022). Vapor Nucleation in Metastable Liquids: the Continuum Description. In: Marengo, M., De Coninck, J. (eds) The Surface Wettability Effect on Phase Change. Springer, Cham. https://doi.org/10.1007/978-3-030-82992-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82992-6_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82991-9

  • Online ISBN: 978-3-030-82992-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics