Skip to main content
Log in

Structures, Mechanisms, and Results in Bifunctional Catalysis and Related Species Involving Proton Transfer

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Pyridyl- and imidazolylphosphines accelerate anti-Markovnikov alkyne hydration and alkene isomerization and deuteration by factors of 1,000 to more than 10,000. The same features that increase the efficiency of bifunctional catalysts also complicate studies of their mechanism. Evidence for proton transfer and hydrogen bonding in catalytic intermediates comes from computational, mechanistic and structural studies, where 15N NMR data are particularly revealing. Our methods should be useful in other studies of bifunctional catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. A footnote in Table 2 of a recent article by the author [39] gives the mistaken impression that the chemical shifts given are relative to formamide δN = 0 ppm when in fact they are relative to formamide δN = −267.8 ppm.

References

  1. Adams C (1999) Chem Ind (Lond) 740–742

  2. Grotjahn DB, Combs D, Van S, Aguirre G, Ortega F (2000) Inorg Chem 39:2080–2086

    Article  CAS  Google Scholar 

  3. Grotjahn DB, Incarvito CD, Rheingold AL (2001) Angew Chem Int Ed 40:3884–3887

    Article  CAS  Google Scholar 

  4. Helmchen G, Steinhagen H (1996) Angew Chem Int Ed 35:2339–2342

    Article  Google Scholar 

  5. Van den Beuken EK, Feringa BL (1998) Tetrahedron 54:12985–13011

    Article  Google Scholar 

  6. Rowlands GJ (2001) Tetrahedron 57:1865–1882

    Article  CAS  Google Scholar 

  7. Clapham SE, Hadzovic A, Morris RH (2004) Coord Chem Rev 248:2201–2237

    Article  CAS  Google Scholar 

  8. Grotjahn DB (2005) Chem Eur J 11:7146–7153

    Article  CAS  Google Scholar 

  9. Ikariya T, Murata K, Noyori R (2006) Org Biomol Chem 4:393–406

    Article  CAS  Google Scholar 

  10. Das S, Brudvig GW, Crabtree RH (2008) Chem Commun (Camb) 413–424

  11. Natale D, Mareque-Rivas JC (2008) Chem Commun (Camb) 425–437

  12. Paull DH, Abraham CJ, Scerba MT, Alden-Danforth E, Lectka T (2008) Acc Chem Res 41:655–663

    Article  CAS  Google Scholar 

  13. Newkome GR (1993) Chem Rev 93:2067–2089

    Article  CAS  Google Scholar 

  14. Zhang Z-Z, Cheng H (1996) Coord Chem Rev 147:1–39

    Article  CAS  Google Scholar 

  15. Slebocka-Tilk H, Cocho JL, Frackman Z, Brown RS (1984) J Am Chem Soc 106:2421–2431

    Article  CAS  Google Scholar 

  16. Wu F-J, Kurtz DM Jr, Hagen KS, Nyman PD, Debrunner PG, Vankai VA (1990) Inorg Chem 29:5174–5183

    Article  CAS  Google Scholar 

  17. Kimblin C, Allen W, Parkin G (1995) J Chem Soc, Chem Commun 1813–1815

  18. Sorrell TN, Allen WE, White PS (1995) Inorg Chem 34:952–960

    Article  CAS  Google Scholar 

  19. Jalil MA, Fujinami S, Senda H, Nishikawa H (1999) J Chem Soc, Dalton Trans 1655–1662

  20. Bachechi F, Burini A, Galassi R, Macchioni A, Pietroni BR, Ziarelli F, Zuccaccia C (2000) J Organomet Chem 593–594:392–402

    Article  Google Scholar 

  21. Tejel C, Bravi R, Ciriano MA, Oro LA, Bordonaba M, Graiff C, Tiripicchio A, Burini A (2000) Organometallics 19:3115–3119

    Article  CAS  Google Scholar 

  22. Tejel C, Ciriano MA, Bravi R, Oro LA, Graiff C, Galassi R, Burini A (2003) Inorg Chim Acta 347:129–136

    Article  CAS  Google Scholar 

  23. Drent E, Arnoldy P, Budzelaar PHM (1993) J Organomet Chem 455:247–253

    Article  CAS  Google Scholar 

  24. Drent E, Arnoldy P, Budzelaar PHM (1994) J Organomet Chem 475:57–63

    Article  CAS  Google Scholar 

  25. Scrivanti A, Beghetto V, Campagna E, Zanato M, Matteoli U (1998) Organometallics 17:630–635

    Article  CAS  Google Scholar 

  26. Dervisi A, Edwards PG, Newman PD, Tooze RP, Colesa SJ, Hursthouse MB (1999) J Chem Soc, Dalton Trans 1113–1119

  27. Labonne A, Kribber T, Hintermann L (2006) Org Lett 8:5853–5856

    Article  CAS  Google Scholar 

  28. Kribber T, Labonne A, Hintermann L (2007) Synthesis 2809–2818

  29. Labonne A, Zani L, Hintermann L, Bolm C (2007) J Org Chem 72:5704–5708

    Article  CAS  Google Scholar 

  30. Hintermann L, Kribber T, Labonne A, Paciok E (2009) Synlett 2412–2416

  31. Oshiki T, Yamashita H, Sawada K, Utsunomiya M, Takahashi K, Takai K (2005) Organometallics 24:6287–6290

    Article  CAS  Google Scholar 

  32. Suzuki T, Tokunaga M, Wakatsuki Y (2001) Org Lett 3:735–737

    Article  CAS  Google Scholar 

  33. Grotjahn DB, Lev DA (2004) J Am Chem Soc 126:12232–12233

    Article  CAS  Google Scholar 

  34. Erdogan G, Grotjahn DB (2009) J Am Chem Soc 131:10354–10355

    Article  CAS  Google Scholar 

  35. Grotjahn DB, Larsen C, Erdogan G, Gustafson J, Sharma A, Nair R (2009) Catal Org React 123:379–387

    CAS  Google Scholar 

  36. Grotjahn DB, Larsen CR, Gustafson JL, Nair R, Sharma A (2007) J Am Chem Soc 129:9592–9593

    Article  CAS  Google Scholar 

  37. Lev DA, Grotjahn DB (2005) Catal Org React 104:237–242

    CAS  Google Scholar 

  38. Grotjahn DB, Lev DA (2005) Catal Org React 104:227–236

    CAS  Google Scholar 

  39. Grotjahn DB (2008) Dalton Trans 6497–6508

  40. Grotjahn DB, Gong Y, DiPasquale AG, Zakharov LN, Rheingold AL (2006) Organometallics 25:5693–5695

    Article  CAS  Google Scholar 

  41. Grotjahn DB, Gong Y, Zakharov LN, Golen JA, Rheingold AL (2006) J Am Chem Soc 128:438–453

    Article  CAS  Google Scholar 

  42. Grotjahn DB, Zeng X, Cooksy AL (2006) J Am Chem Soc 128:2798–2799

    Article  CAS  Google Scholar 

  43. Grotjahn DB, Zeng X, Cooksy AL, Kassel WS, DiPasquale AG, Zakharov LN, Rheingold AL (2007) Organometallics 26:3385–3402

    Article  CAS  Google Scholar 

  44. Grotjahn DB, Kragulj EJ, Zeinalipour-Yazdi CD, Miranda-Soto V, Lev DA, Cooksy AL (2008) J Am Chem Soc 130:10860–10861

    Article  CAS  Google Scholar 

  45. Grotjahn DB, Miranda-Soto V, Kragulj EJ, Lev DA, Erdogan G, Zeng X, Cooksy AL (2008) J Am Chem Soc 130:20–21

    Article  CAS  Google Scholar 

  46. Grotjahn DB, Zeng X, Cooksy AL, Kassel WS, DiPasquale AG, Zakharov LN, Rheingold AL (2008) Organometallics 27:3626

    Article  CAS  Google Scholar 

  47. Hintermann L, Dang TT, Labonne A, Kribber T, Xiao L, Naumov P (2009) Chem Eur J 15:7167–7179

    Article  CAS  Google Scholar 

  48. Hintermann L, Xiao L, Labonne A (2008) Angew Chem Int Ed 47:8246–8250

    Article  CAS  Google Scholar 

  49. Tokunaga M, Suzuki T, Koga N, Fukushima T, Horiuchi A, Wakatsuki Y (2001) J Am Chem Soc 123:11917–11924

    Article  CAS  Google Scholar 

  50. Luginbühl W, Zbinden P, Pittet PA, Armbruster T, Bürgi HB, Merbach AE, Ludi A (1991) Inorg Chem 30:2350–2355

    Article  Google Scholar 

  51. Pazderski L, Szlyk E, Sitkowski J, Kamienski B, Kozerski L, Tousek J, Marek R (2006) Magn Res Chem 44:163–170

    Article  CAS  Google Scholar 

  52. Marek R, Lycka A, Kolehmainen E, Sievanen E, Tousek J (2007) Curr Org Chem 11:1154–1205

    Article  CAS  Google Scholar 

  53. Marek R, Lycka A (2002) Curr Org Chem 6:35–66

    Article  CAS  Google Scholar 

  54. Andreeva DV, Ip B, Gurinov AA, Tolstoy PM, Denisov GS, Shenderovich IG, Limbach H-H (2006) J Phys Chem A 110:10872–10879

    Article  CAS  Google Scholar 

  55. Cooksy AL (unpublished results)

  56. Maitlis PM (1982) Coord Chem Rev 43:377–384

    Article  CAS  Google Scholar 

  57. Bergman RG (1990) J Organomet Chem 400:273–282

    Article  CAS  Google Scholar 

  58. Klei SR, Golden JT, Burger P, Bergman RG (2002) J Mol Catal A 189:79–94

    Article  CAS  Google Scholar 

  59. Liu J, Wua X, Iggoa JA, Xiao J (2008) Coord Chem Rev 252:782–809

    Article  CAS  Google Scholar 

  60. Fujita K-I, Enoki Y, Yamaguchi R (2008) Tetrahedron 64:1943–1954

    Article  CAS  Google Scholar 

  61. Moussa J, Amouri H (2008) Angew Chem Int Ed 47:1372–1380

    Article  CAS  Google Scholar 

  62. Miecznikowski JR, Crabtree RH (2004) Organometallics 23:629–631

    Article  CAS  Google Scholar 

  63. Corberán R, Sanaú M, Peris E (2007) Organometallics 26:3492–3498

    Article  Google Scholar 

  64. Newman LJ, Bergman RG (1985) J Am Chem Soc 107:5314–5315

    Article  CAS  Google Scholar 

  65. Ritter JCM, Bergman RG (1998) J Am Chem Soc 120:6826–6827

    Article  CAS  Google Scholar 

  66. Glueck DS, Winslow LJN, Bergman RG (1991) Organometallics 10:1462–1479

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank all of the dedicated co-workers who are co-authors on papers cited; SDSU colleague Professor Andrew Cooksy has been essential to advancing the computational and kinetics portions of this work; Dr. LeRoy Lafferty has assisted the author and his students with NMR experiments; Professor Arnold Rheingold and his group have been invaluable for their X-ray diffraction expertise; and the National Science Foundation has supported not only the work described here (CHE-0415783 and -0719575), but also upgrading the SDSU departmental NMR facility (MRI CHE-0521698).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas B. Grotjahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grotjahn, D.B. Structures, Mechanisms, and Results in Bifunctional Catalysis and Related Species Involving Proton Transfer. Top Catal 53, 1009–1014 (2010). https://doi.org/10.1007/s11244-010-9571-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-010-9571-z

Keywords

Navigation