Skip to main content
Log in

Catalysis of Selective Hydrogen/Deuterium Exchange at Allylic Positions Using Deuterium Oxide

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Deuterated organic compounds can be prepared efficiently and cost effectively by the direct exchange of a hydrogen atom by a deuterium atom on a carbon center rather than classical synthetic procedures. H/D exchange is achieved at allylic positions of alkenes catalyzed by alkene isomerization catalyst 1. An outstanding degree of deuteration is achieved at positions accessible by isomerization in homogeneous and biphasic reaction settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The effects of isotope fractionation have been considered. Experimental data summarized in Table 9 of ref. 23 for ethylene and methane suggest that insignificant fractionation between vinylic and alkyl C–H bonds should occur, and the effect of fractionation between these hydrocarbon C–H bonds and the O–H bonds should have less than 1–2% effect on degree of substrate deuteration under our conditions.

References

  1. Garnett JL, Hodges RJ (1967) J Am Chem Soc 89:4546

    Article  CAS  Google Scholar 

  2. Atzrodt J, Derdau V, Fey T, Zimmerman J (2006) Angew Chem Int Ed Engl 45:7744

    Google Scholar 

  3. Klei SR, Golden JT, Tilley TD, Bergman RG (2002) J Am Chem Soc 124:2092

    Article  CAS  Google Scholar 

  4. Klei SR, Bergman RG (2002) Organometallics 21:4905

    Article  CAS  Google Scholar 

  5. Golden JT, Andersen RA, Bergman RG (2001) J Am Chem Soc 123:5837

    Article  CAS  Google Scholar 

  6. Hanson SK, Heinekey DM, Goldberg KI (2008) Organometallics 27:1454

    Article  CAS  Google Scholar 

  7. Corberán R, Sanaú M, Peris E (2006) J Am Chem Soc 128:3974

    Article  Google Scholar 

  8. Corberán R, Sanaú M, Peris E (2006) Organometallics 25:4002

    Article  Google Scholar 

  9. Prechtl MHG, Hölscher M, Ben-David Y, Theyssen N, Loschen R, Milstein D, Leitner W (2007) Angew Chem Int Ed Engl 46:2269

    Article  CAS  Google Scholar 

  10. Faller JW, Felkin H (1985) Organometallics 4:1448

    Google Scholar 

  11. Faller JW, Smart CJ (1989) Organometallics 8:602

    Article  CAS  Google Scholar 

  12. Rybtchinski B, Cohen R, Ben-David Y, Martin JML, Milstein D (2003) J Am Chem Soc 125:11041

    Article  CAS  Google Scholar 

  13. Yung CM, Skaddan MB, Bergman RG (2004) J Am Chem Soc 126:13033

    Article  CAS  Google Scholar 

  14. Kohl G, Rudolph R, Pritzkow H, Enders M (2005) Organometallics 24:4774

    Article  CAS  Google Scholar 

  15. Zhou JR, Hodges RL (2008) Angew Chem Int Ed Engl 47:5783

    Article  CAS  Google Scholar 

  16. Erdogan G, Grotjahn DB (2009) J Am Chem Soc 131:10354

    Article  CAS  Google Scholar 

  17. Garnett JL, Long MA, Peterson KB (1974) Aust J Chem 27:1823

    CAS  Google Scholar 

  18. Blake MR, Garnett JL, Gregor IK, Hannan W, Hoa K, Long MA (1975) J Chem Soc Chem Commun 930

  19. Shilov AE, Shteinman AA (1977) Coord Chem Rev 24:97

    Article  CAS  Google Scholar 

  20. Leung CW, Zheng W, Wang D, Ng SM, Yeung CH, Zhou Z, Lin Z, Lau CP (2007) Organometallics 26:9124

    Google Scholar 

  21. Kushner DJ, Baker A, Dunstall TG (1999) Can J Physiol Pharmacol 77:79

    Article  CAS  Google Scholar 

  22. Grotjahn DB, Larsen CR, Gustafson JL, Nair R, Sharma A (2007) J Am Chem Soc 129:9592

    Article  CAS  Google Scholar 

  23. Harris NJ (1995) J Phys Chem 99:14689

    Article  CAS  Google Scholar 

  24. Courchay FC, Sworen JC, Ghiviriga I, Khalil AA, Wagener KB (2006) Organometallics 25:6074

    Article  CAS  Google Scholar 

  25. McGrath DV, Grubbs RH (1994) Organometallics 13:224

    Article  CAS  Google Scholar 

  26. Bergens SH, Bosnich B (1991) J Am Chem Soc 113:958

    Article  CAS  Google Scholar 

  27. Hendrix WT, Von Rosenberg JL (1976) J Am Chem Soc 98:4850

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Reji Nair for early experiments, Dr. LeRoy Lafferty for his assistance with NMR experiments, and the NSF (CHE 0719575) for supporting this and related work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas B. Grotjahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdogan, G., Grotjahn, D.B. Catalysis of Selective Hydrogen/Deuterium Exchange at Allylic Positions Using Deuterium Oxide. Top Catal 53, 1055–1058 (2010). https://doi.org/10.1007/s11244-010-9531-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-010-9531-7

Keywords

Navigation