Skip to main content
Log in

Biodiesel: Current Trends and Properties

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Biodiesel, an alternative to petroleum-derived diesel fuel, is defined as the mono-alkyl esters of vegetable oils and animal fats. Several current issues affecting biodiesel that are briefly discussed include the role of new feedstocks in meeting increased demand for biodiesel and circumventing the food versus fuel issue, biodiesel production, as well as fuel properties and their improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mittelbach M, Remschmidt C (2004) Biodiesel––the comprehensive handbook. M Mittelbach, Graz, Austria

    Google Scholar 

  2. Knothe G, Van Gerpen J, Krahl J (eds) (2005) The biodiesel handbook. AOCS Press, Champaign, IL

    Google Scholar 

  3. American Society for Testing and Materials (ASTM) Standard D6751. Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels. ASTM, West Conshohocken, PA

  4. Sims REH (1985) Tallow esters as an alternative diesel fuel. Trans ASAE 28:716–721

    CAS  Google Scholar 

  5. Zheng D, Hanna MA (1996) Preparation and properties of methyl esters of beef tallow. Bioresour Technol 57:137–142

    Article  CAS  Google Scholar 

  6. Nye MJ, Williamson TW, Deshpande S, Schrader JH, Snively WH, Yurkewich TP, French CL (1983) Conversion of used frying oil to diesel fuel by transesterification: preliminary tests. J Am Oil Chem Soc 60:1598–1601

    Article  CAS  Google Scholar 

  7. Kulkarni MG, Dalai AK (2006) Waste cooking oil––an economical source for biodiesel: a review. Ind Eng Chem Res 45:2901–2913

    Article  CAS  Google Scholar 

  8. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  9. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  10. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  Google Scholar 

  11. Lardon L, Hélias A, Sialve B, Steyer JP, Bernard A (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43:6475–6481

    Article  CAS  Google Scholar 

  12. Foidl N, Foidl G, Sanchez M, Mittelbach M, Hackel S (1996) Jatropha Curcas L. as a source for the production of biofuel in Nicaragua. Bioresour Technol 58:77–82

    Article  CAS  Google Scholar 

  13. Wood P (2005) Out of Africa. Could Jatropha be Europe’s biodiesel feedstock? Refocus 6:40–44

    Article  Google Scholar 

  14. Berchmans HJ, Hirata S (2008) Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour Technol 99:1716–1721

    Article  CAS  Google Scholar 

  15. European Committee for Standardization. Standard EN 14214. Automotive fuels––fatty acid methyl esters (FAME) for diesel engines––requirements and test methods

  16. Diesel R (1913) Die Entstehung des Dieselmotors. Verlag von Julius Springer, Berlin

    Google Scholar 

  17. Diesel R (1912) The diesel oil-engine. Engineering 93:395–406

    CAS  Google Scholar 

  18. Knothe G (2001) Historical perspectives on vegetable oil-based diesel fuel. INFORM 12:1103–1107

    Google Scholar 

  19. Chavanne CG (1937) Procédé de transformation d’huiles végétales en vue de leur utilisation comme carburants (Procedure for the transformation of vegetable oils in view of their use as fuels). Belgian Patent BE 422,877, 31 Aug 1937

  20. van den Abeele M (1942) Palm oil as raw material for the production of a heavy motor fuel (L’huile de palme. Matière première pour la préparation d’un carburant lourd utilisable dans les moteurs à combustion interne) Bull Agr Congo Belge 33:3–90

    Google Scholar 

  21. Chavanne G (1942) Sur un mode d’utilisation possible de l’huile de palme à la fabrication d’un carburant lourd. (A method of possible utilization of palm oil for the manufacture of a heavy fuel) Bull Soc Chim 19:52–58

    Google Scholar 

  22. Bruwer JJ, van d Boshoff B, Hugo FJC, Fuls J, Hawkins C, van der Walt AN, Engelbrecht A, du Plessis LM (1980) The utilization of sunflower seed oil as a renewable fuel for diesel engines. Nat Energy Symp, ASAE, Kansas City, MO

  23. Bruwer JJ, van d Boshoff B, Hugo FJC, du Plessis LM, Fuls J, Hawkins C, van der Walt AN, Engelbrecht A (1980) Sunflower seed oil as an extender for diesel fuel in agricultural tractors. Symp S Afr Inst Agricult Eng

  24. Freedman B, Pryde EH, Mounts TL (1984) Variables affecting the yields of fatty esters from transesterified vegetable oils. J Am Oil Chem Soc 61:1638–1643

    Article  CAS  Google Scholar 

  25. Wicke B, Dornburg V, Junginger M, Faaij A (2008) Different palm oil production systems for energy purposes and their greenhouse gas implications. Biomass Bioenergy 32:1322–1337

    Article  CAS  Google Scholar 

  26. Yee KF, Tan KT, Abdullah AZ, Lee KT (2009) Life cycle assessment of palm biodiesel: revealing facts and benefits and sustainability. Appl Energy 86:S189–S196

    Article  CAS  Google Scholar 

  27. Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O Release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys Discuss 7:11191–11205; Atmos Chem Phys Discuss 8:389–395

    Google Scholar 

  28. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Nat Acad Sci 103:11206–11210

    Article  CAS  Google Scholar 

  29. Huo H, Wang M, Bloyd C, Putsche V (2009) Life cycle assessment of energy use and greenhouse gas emissions of soybean-derived biodiesel and renewable fuels. Environ Sci Technol 43:750–756

    Article  CAS  Google Scholar 

  30. Williams PRD, Inman D, Aden A, Heath GA (2009) Environmental and sustainability factors associated with next-generation biofuels in the U.S.: what do we really know? Environ Sci Technol 43:4763–4775

    Article  CAS  Google Scholar 

  31. Frondel M, Peters J (2007) Biodiesel: a new oildorado? Energy Policy 35:1675–1684

    Article  Google Scholar 

  32. National Biodiesel Board. http://www.biodiesel.org/pdf_files/fuelfactsheets/Production_Capacity.pdf, http://www.biodiesel.org/pdf_files/fuelfactsheets/Production_Graph_Slide.pdf. Accessed 2 Nov 2009

  33. European Biodiesel Board. http://www.ebb-eu.org/stats.php, http://www.ebb-eu.org/prev_stats_production.php. Accessed 2 Nov 2009

  34. Canakci M, Van Gerpen J (1999) Biodiesel production via acid catalysis. Trans ASAE 42:1203–1210

    CAS  Google Scholar 

  35. Gutsche B (1997) Technology of methyl ester production and its application to biofuels. (Technologie der Methylesterherstellung - Anwendung für die Biodieselproduktion). Fett/Lipid 99:418–427

    Article  CAS  Google Scholar 

  36. Schuchardt U, Serchelt R, Vargas RM (1998) Transesterification of vegetable oils: a review. J Braz Chem Soc 9:199–210

    Article  CAS  Google Scholar 

  37. Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15

    Article  CAS  Google Scholar 

  38. Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405–416

    Article  CAS  Google Scholar 

  39. Haas MJ, Piazza GJ, Foglia TA (2002) Enzymatic approaches to the production of biodiesel fuels. In: Kuo TM, Gardner HW (eds) Lipid biotechnology. Marcel Dekker, New York, Basel, pp 587–598

    Google Scholar 

  40. Shah S, Sharma S, Gupta MN (2003) Enzymatic transesterification for biodiesel production. Ind J Biochem Biophys 40:392–399

    CAS  Google Scholar 

  41. Nakazono Y (2003) Production technology for biodiesel fuels (Article in Japanese). Eco Indus 8:43–53

    CAS  Google Scholar 

  42. Bondioli P (2004) The preparation of fatty acid esters by means of catalytic reactions. Top Catal 27:77–82

    Article  CAS  Google Scholar 

  43. Hoydonckx HE, De Vos DE, Chavan SA, Jacobs PA (2004) Esterification and transesterification of renewable chemicals. Top Catal 27:83–96

    Article  CAS  Google Scholar 

  44. Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG Jr (2005) Synthesis of biodiesel via acid catalysis. Ind Eng Chem Res 44:5353–5363

    Article  CAS  Google Scholar 

  45. Meher LC, Sagar DV, Nail SN (2006) Technical aspects of biodiesel production by transesterification––a review. Renew Sustain Energy Rev 10:248–268

    Article  CAS  Google Scholar 

  46. Mbaraka IK, Shanks BH (2006) Conversion of oils and fats using advanced mesoporous heterogeneous catalysts. J Am Oil Chem Soc 83:79–91

    Article  CAS  Google Scholar 

  47. Lotero E, Goodwin JG Jr, Bruce DA, Suwannakarn K, Liu Y, Lopez DE (2006) The catalysis of biodiesel synthesis. Catalysis 19:41–83

    Article  CAS  Google Scholar 

  48. Marchetti JM, Miguel VU, Errazu AF (2007) Possible methods for biodiesel production. Renew Sustain Energy Rev 11:1300–1311

    Article  CAS  Google Scholar 

  49. Behzadi S, Farid MM (2007) Review: examining the use of different feedstock for the production of biodiesel. Asia-Pacific J Chem Eng 2:480–486

    Google Scholar 

  50. Al-Zuhair S (2007) Production of biodiesel: possibilities and challenges. Biofuels Bioprod Bioref 1:57–66

    Article  CAS  Google Scholar 

  51. Akoh CC, Chang S-W, Lee G-C, Shaw J-F (2007) Enzymatic approach to biodiesel production. J Agric Food Chem 55:8995–9005

    Google Scholar 

  52. Ranganathan SV, Lakshmi Narasimhan S, Muthukumar K (2008) An overview of enzymatic production of biodiesel. Bioresour Technol 99:3975–3981

    Article  CAS  Google Scholar 

  53. Nikiema J, Heitz M (2008) Biodiesel. II. Production––a synthesis (Le biodiesel. II. Production––une synthèse). Can J Civil Eng 35:107–117

    Article  CAS  Google Scholar 

  54. Nielsen PM, Brask J, Fjerbaek L (2008) Enzymatic biodiesel production: technical and economical considerations. Eur J Lipid Sci Technol 110:692–700

    Article  CAS  Google Scholar 

  55. Di Serio M, Tesser RL, Pengmei L, Santacesaria E (2008) Heterogeneous catalysts for biodiesel production. Energy Fuels 22:207–217

    Google Scholar 

  56. Fjerbaek L, Christensen KV, Norddahl B (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 102:1298–1315

    Article  CAS  Google Scholar 

  57. Harrington KJ (1986) Chemical and physical properties of vegetable oil esters and their effect on diesel fuel performance. Biomass 9:1–17

    Article  CAS  Google Scholar 

  58. Knothe G, Matheaus AC, Ryan TW III (2003) Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester. Fuel 82:971–997

    Article  CAS  Google Scholar 

  59. Ladommatos N, Parsi M, Knowles A (1996) The effect of fuel cetane improver on diesel pollutant emissions. Fuel 75:8–14

    Article  CAS  Google Scholar 

  60. McCormick RL, Graboski MS, Alleman TL, Herring AM (2001) Impact of biodiesel source material and chemical structure on emissions of criteria pollutants from a heavy-duty engine. Environ Sci Technol 35:1742–1747

    Article  CAS  Google Scholar 

  61. Knothe G, Sharp CA, Ryan TW III (2006) Exhaust emissions of biodiesel. Petrodiesel, neat methyl esters, and alkanes in a new technology engine. Energy Fuels 20:403–408

    Article  CAS  Google Scholar 

  62. Knothe G, Steidley KR (2005) Kinematic viscosity of biodiesel fuel components. influence of compound structure and comparison to petrodiesel fuel components. Fuel 84:1059–1065

    Article  CAS  Google Scholar 

  63. Frankel EN (2005) Lipid oxidation, 2nd edn. The Oily Press, PJ Barnes & Associates, Bridgwater, England

    Google Scholar 

  64. Knothe G (2002) Structure indices in FA Chemistry. How relevant is the iodine value? J Am Oil Chem Soc 79:847–854

    Article  CAS  Google Scholar 

  65. Dunn RO, Bagby MO (1995) Low-temperature properties of triglyceride-based diesel fuels: transesterified methyl esters and petroleum middle distillate/ester blends. J Am Oil Chem Soc 72:895–904

    Article  CAS  Google Scholar 

  66. Lacey PI, Westbrook SR (1995) Diesel fuel lubricity. SAE Technical Paper Series 950248

  67. Knothe G, Steidley KR (2005) Lubricity of components of biodiesel and petrodiesel. The origin of biodiesel lubricity. Energy Fuels 19:1192–1200

    Article  CAS  Google Scholar 

  68. Yu L, Lee I, Hammond EG, Johnson LA, Van Gerpen JH (1998) The influence of trace components on the melting point of methyl soyate. J Am Oil Chem Soc 75:1821–1824

    Article  CAS  Google Scholar 

  69. Bondioli P, Cortesi N, Mariani C (2008) Identification and Quantification of steryl glucosides in biodiesel. Eur J Lipid Sci Technol 110:120–126

    Article  CAS  Google Scholar 

  70. Moreau RA, Scott KM, Haas MJ (2008) The identification of steryl glucosides in precipitates from commercial biodiesel. J Am Oil Chem Soc 85:761–770

    Article  CAS  Google Scholar 

  71. Van Hoed V, Zyaykina N, De Greyt W, Maes J, Verhé R, Demeestere K (2008) Identification and occurrence of steryl glucosides in palm and soy biodiesel. J Am Oil Chem Soc 85:701–709

    Article  Google Scholar 

  72. Bringe NA (2005) Soybean oil composition for biodiesel. In: Knothe G, Van Gerpen J, Krahl J (eds) The biodiesel handbook. AOCS Press, Champaign, IL, pp 161–164

    Google Scholar 

  73. Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 22:1358–1364

    Article  CAS  Google Scholar 

  74. Knothe G, Cermak SC, Evangelista RL (2009) Cuphea oil as source of biodiesel with improved fuel properties caused by high content of methyl decanoate. Energy Fuels 23:1743–1747

    Article  CAS  Google Scholar 

  75. Dehesh K (2001) How can we genetically engineer oilseed crops to produce high levels of medium-chain fatty acids? Eur J Lipid Sci Technol 103:688–697

    Article  CAS  Google Scholar 

  76. Moser BR, Knothe G, Vaughn SF, Isbell TA (2009) Production and evaluation of biodiesel from field pennycress (Thlaspi arvense L.). Oil Energy Fuels 23:4149–4155

    Google Scholar 

  77. Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ. Sci. 2:759–766

    Article  CAS  Google Scholar 

  78. Pinzi S, Garcia IL, Lopez-Gimenez FJ, Luque de Castro MD, Dorado G, Dorado MP (2009) The ideal vegetable oil-based biodiesel composition: a review of social. Economical and technical implications. Energy Fuels 23:2325–2341

    Article  CAS  Google Scholar 

  79. Roessler PG, Brown LM, Dunahay TG, Heacox DA, Jarvis EE, Schneider JC, Talbot SG, Zeiler KG (1994) Genetic engineering approaches for enhanced production of biodiesel fuel from microalgae. ACS Symp Ser 566:255–270 (Enzymatic conversion of biomass for fuels production)

    Google Scholar 

  80. Dunahay TG, Jarvis EE, Dais SS, Roessler PG (1996) Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol 57–58:223–231

    Article  Google Scholar 

  81. Kalscheuer R, Stölting T, Steinbüchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536

    Article  CAS  Google Scholar 

  82. Keasling JD, Hu Z, Somerville C, Church G, Berry D, Friedman L, Schirmer A, Brubaker S, del Cardayré SB (2007) Production of fatty acids and derivatives thereof, WO/2007/136762, November 29, 2007. http://www.wipo.int/pctdb/en/wo.jsp?WO=2007136762

  83. Wackett LP (2008) Biomass to fuels via microbial transformations. Curr Opin Chem Biol 12:187–193

    Article  CAS  Google Scholar 

  84. Stöveken T, Steinbüchel A (2008) Bacterial acyltransferases as an alternative for lipase-catalyzed acylation for the production of oleochemicals and fuels. Angew Chem Int Ed 47:3688–3694

    Article  Google Scholar 

Download references

Disclaimer

Product names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Knothe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knothe, G. Biodiesel: Current Trends and Properties. Top Catal 53, 714–720 (2010). https://doi.org/10.1007/s11244-010-9457-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-010-9457-0

Keywords

Navigation