Skip to main content
Log in

A Review of BTEM Analysis for Catalytic Studies and a Recent Homogeneous Catalytic Example

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In situ spectroscopic measurements of homogeneous catalytic reactions have become much more widely used. This is particularly true for FTIR, Raman, and NMR spectroscopic measurements. Although the instrumental and experimental advances have been quite noteworthy, less attention has been focused on the corresponding signal processing and numerical issues. In the present review, pure component spectral reconstruction using FTIR spectroscopy and band-target entropy minimization (BTEM) is emphasized. In a typical BTEM analysis, a set of hundreds or thousands of reaction spectra are acquired from a series of experimental runs and then analyzed together. The resulting set of pure component spectral estimates are obtained without any a priori information such as spectral libraries, and therefore, BTEM analysis is particularly suitable for the analysis of new reactions in exploratory studies. In the present review, the hydroformylation of alkenes using a mixed rhodium–rhenium carbonyl system is given as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5

Similar content being viewed by others

References

  1. Haynes A (2005) In: Heaton B (ed) Mechanisms in homogeneous catalysis: a spectroscopic approach, Chap 3. Wiley, London

  2. Stair PC (2001) Curr Opin Solid State Mater Sci 5:365

    Article  CAS  Google Scholar 

  3. Viviente EM, Pregosin P, Scott D (2005) In: Heaton B (ed) Mechanisms in homogeneous catalysis: a spectroscopic approach, Chap 1. Wiley, London

  4. Gladden L (1999) Top Catal 8:87

    Article  CAS  Google Scholar 

  5. Hunger M, Weitkamp J (2001) Angew Chem Int Ed Engl 40:2954

    Article  CAS  Google Scholar 

  6. Chew W, Widjaja E, Garland M (2002) Organometallics 21:1882

    Article  Google Scholar 

  7. Widjaja E, Li C, Garland M (2002) Organometallics 21:1991

    Article  CAS  Google Scholar 

  8. Li C, Widjaja E, Chew W, Garland M (2002) Angew Chem Int Ed Engl 41:3785

    Article  Google Scholar 

  9. Widjaja E, Li C, Chew W, Garland M (2003) Anal Chem 75:4499

    Article  CAS  Google Scholar 

  10. Golub GH, van Loan CF (1989) Matrix computations. Johns Hopkins University Press, Baltimore

    Google Scholar 

  11. Shannon CS (1948) Bell Syst Technol J 3:379

    Google Scholar 

  12. Watanabe S (1981) Pattern Recognit 13:381

    Article  Google Scholar 

  13. Karpur JN (1993) Maximum entropy models in science and engineering. Wiley, New York

    Google Scholar 

  14. Garland M (2005) In: Heaton B (ed) Mechanisms in homogeneous catalysis: a spectroscopic approach, Chap 4. Wiley, London

  15. Zhang H, Chew W, Garland M (2007) Appl Spectrosc 61:1366

    Article  CAS  Google Scholar 

  16. Cheng S, Gao F, Krummel KI, Garland M (2008) Talanta 74:1132

    Article  CAS  Google Scholar 

  17. Garland M (2003) In: Horvath IT (ed) Encyclopedia of catalysis. Wiley, New York

    Google Scholar 

  18. Yamamoto K, Ishida H (1994) Vib Spectrosc 8:1

    Article  CAS  Google Scholar 

  19. Garland M, Vissar E, Terweisch P, Rippin DWT (1997) Anal Chim Acta 353:337

    Article  Google Scholar 

  20. Li C, Widjaja E, Garland M (2003) J Catal 213:126

    Article  CAS  Google Scholar 

  21. Li C, Guo L, Garland M (2004) Organometallics 23:2201

    Article  CAS  Google Scholar 

  22. Allian AD, Wang Y, Saeys M, Kuramshina GM, Garland M (2006) Vib Spectrosc 41:101

    Article  CAS  Google Scholar 

  23. Allian AD, Widjaja E, Garland M (2006) Dalton Trans 4211

  24. Widjaja E, Li C, Garland M (2004) J Catal 223:278

    Article  CAS  Google Scholar 

  25. Chew W, Widjaja E, Garland M (2007) Appl Spectrosc 61:734

    Article  CAS  Google Scholar 

  26. Li C, Widjaja E, Garland M (2003) J Am Chem Soc 125:5540

    Article  CAS  Google Scholar 

  27. Li C, Widjaja E, Garland M (2004) Organometallics 23:4131

    Article  CAS  Google Scholar 

  28. Li C, Chen L, Garland M (2007) J Am Chem Soc 129:13327

    Article  CAS  Google Scholar 

  29. Liu G, Li C, Guo L, Garland M (2006) J Catal 237:67

    Article  CAS  Google Scholar 

  30. Li C, Chen L, Garland M (2008) Adv Synth Catal 350:679

    Article  CAS  Google Scholar 

  31. Gao F, Ng KP, Li C, Krummel KI, Allian AD, Garland M (2006) J Catal 237:49

    Article  CAS  Google Scholar 

  32. Chen L, Garland M (2002) Appl Spectrosc 28:1422

    Article  Google Scholar 

  33. Garland M, Bor G (1989) Inorg Chem 28:410

    Article  CAS  Google Scholar 

  34. Li C, Guo L, Garland M (2004) Organometallics 23:5275

    Article  CAS  Google Scholar 

  35. Kee WS Sim BH, Sim WS, Chew W (2006) Anal Chim Acta 571:113

    Article  Google Scholar 

  36. Chilukoti S, Widjaja E, Gao F, Zhang H, Anderson BG, Hans Niemantsverdriet JW, Garland M (2008) Phys Chem Chem Phys 10:3535

    Article  CAS  Google Scholar 

  37. Chilukoti S, Gao F, Anderson BG, Hans Niemantsverdriet JW, Garland M (2008) Phys Chem Chem Phys 10:5510

    Article  CAS  Google Scholar 

  38. Guo L, Sprenger P, Garland M (2008) Anal Chim Acta 608:48

    Article  CAS  Google Scholar 

  39. Guo L, Wiesmath A, Sprenger P, Garland M (2005) Anal Chem 77:1655

    Article  CAS  Google Scholar 

  40. Guo L, Kooli F, Garland M (2004) Anal Chim Acta 517:229

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Agency for Science, Technology and Research (A*STAR), Singapore, under the Advanced Reaction Engineering, Process Analytics, and Chemometrics program of ICES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Garland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garland, M., Li, C. A Review of BTEM Analysis for Catalytic Studies and a Recent Homogeneous Catalytic Example. Top Catal 52, 1334–1341 (2009). https://doi.org/10.1007/s11244-009-9311-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-009-9311-4

Keywords

Navigation