Skip to main content
Log in

Size Controlled Synthesis of Gold Nanoparticles by Porphyrin with Four Sulfur Atoms

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Tetradentate thioacetyl porphyrin ligand (1) was synthesized to protect gold nanoparticles. 1-protected gold nanoparticles were characterized by UV-vis spectroscopy and XPS. Analysis by XPS showed that all of four thioacetyl groups of 1 were dissociated and bound to the surface of gold nanoparticles in thiolate form. The size of 1-protected gold nanoparticles (GN:1) was controlled by thioacetyl group/HAuCl4 molar ratio and approached to 2 nm. Compared with a protecting ligand without porphyrin plane (2) or dodecanethiol, 1 can control the size of gold nanoparticles efficiently probably due to the tetradentate ligation effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Haruta M (1997) Catal Today 36:153–166

    Article  CAS  Google Scholar 

  2. Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T (2005) J Am Chem Soc 127:9374–9375

    Article  CAS  Google Scholar 

  3. Link S, El-Sayed MA (1999) J Phys Chem B 103:8410–8426

    Article  CAS  Google Scholar 

  4. Sato T, Ahmed H, Brown D, Johnson BFG (1997) J Appl Phys 82:696–701

    Article  CAS  Google Scholar 

  5. Klein DL, McEuen PL, Katari JEB, Roth R, Alivisatos AP (1996) Appl Phys Lett 68:2574–2576

    Article  CAS  Google Scholar 

  6. Smith BA, Zhang JZ, Giebel U, Schmid G (1997) Chem Phys Lett 270:139–144

    Article  CAS  Google Scholar 

  7. Kim B, Tripp SL, Wei A (2001) J Am Chem Soc 123:7955–7956

    Article  CAS  Google Scholar 

  8. Leff DV, Ohara PC, Heath JR, Gelbart WM (1995) J Phys Chem 99:7036–7041

    Article  CAS  Google Scholar 

  9. Yonezawa T, Yasui K, Kimizuka N (2001) Langmuir 17:271–273

    Article  CAS  Google Scholar 

  10. Zhang SS, Leem G, Srisombat LO, Lee TR (2008) J Am Chem Soc 130:113–120

    Article  CAS  Google Scholar 

  11. Hasobe T, Imahori H, Kamat PV, Ahn TK, Kim SK, Kim D, Fujimoto A, Hirakawa T, Fukuzumi S (2005) J Am Chem Soc 127:1216–1228

    Article  CAS  Google Scholar 

  12. Weiss J (2001) J Incl Phenom Macro 40:1–22

    Article  CAS  Google Scholar 

  13. Groves JT, Kruper WJ (1979) J Am Chem Soc 101:7613–7615

    Article  CAS  Google Scholar 

  14. Groves JT, Haushalter RC, Nakamura M, Nemo TE, Evans BJ (1981) J Am Chem Soc 103:2884–2886

    Article  CAS  Google Scholar 

  15. Gunter MJ, Turner P (1991) Coord Chem Rev 108:115–161

    Article  CAS  Google Scholar 

  16. Kanehara M, Takahashi H, Teranishi T (2008) Angew Chem Int Ed 47:307–310

    Article  CAS  Google Scholar 

  17. Beer PD, Cormode DP, Davis JJ (2004) Chem Commun (4):414–415

  18. Collman JP, Gagne RR, Reed C, Halbert TR, Lang G, Robinson WT (1975) J Am Chem Soc 97:1427–1439

    Article  CAS  Google Scholar 

  19. Lindsey J (1980) J Org Chem 45:5215

    Article  CAS  Google Scholar 

  20. Barber DC, Freitagbeeston RA, Whitten DG (1991) J Phys Chem 95:4074–4086

    Article  CAS  Google Scholar 

  21. Wirde M, Gelius U, Nyholm L (1999) Langmuir 15:6370–6378

    Article  CAS  Google Scholar 

  22. Hostetler MJ, Wingate JE, Zhong C-J, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Evans ND, Murray RW (1998) Langmuir 14:17–30

    Article  CAS  Google Scholar 

  23. McNeillie A, Brown DH, Smith WE, Gibson M, Watson L (1980) J Chem Soc Dalton Trans (5):767–770

  24. Zhang P, Sham TK (2003) Phys Rev Lett 90:245502

    Article  Google Scholar 

  25. Tanaka A, Takeda Y, Imamura M, Sato S (2003) Phys Rev B 68:195415

    Article  Google Scholar 

  26. Negishi Y, Chaki NK, Shichibu Y, Whetten RK, Tsukuda T (2007) J Am Chem Soc 127:11322–11323

    Article  Google Scholar 

  27. Kanehara M, Kodzuka E, Teranishi T (2006) J Am Chem Soc 128:13084–13094

    Article  CAS  Google Scholar 

  28. Tour JM, Jones L, Pearson DL, Lamba JJS, Burgin TP, Whitesides GM, Allara DL, Parikh AN, Atre S (1995) J Am Chem Soc 117:9529–9534

    Article  CAS  Google Scholar 

  29. Berner S, Biela S, Ledung G, Gogoll A, Backvall JE, Puglia C, Oscarsson S (2006) J Catal 244:86–91

    Article  CAS  Google Scholar 

  30. Berner S, Lidbaum H, Ledung G, Ahlund J, Nilson K, Schiessling J, Gelius U, Backvall JE, Puglia C, Oscarsson S (2007) Appl Surf Sci 253:7540–7548

    Article  CAS  Google Scholar 

  31. Niklewski A, Azzam W, Strunskus T, Fischer RA, Woll C (2004) Langmuir 20:8620–8624

    Article  CAS  Google Scholar 

  32. Wei A (2006) Chem Commun (15):1581–1591

Download references

Acknowledgments

This work was supported by Grant-in-Aid for Young Scientists (B) (Nos. 17750156 and 20750135) from the Ministry of Education, Culture, Sports, Science and Technology. J.O. thanks the JSPS Research Fellowships for Young Scientists. The authors would like to thank Prof. K. Naka (Kyoto Inst. Tech.), Dr. A. Narita and Prof. Y. Chujo (Kyoto Univ.) for kind access and assistance to TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junya Ohyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohyama, J., Hitomi, Y., Higuchi, Y. et al. Size Controlled Synthesis of Gold Nanoparticles by Porphyrin with Four Sulfur Atoms. Top Catal 52, 852–859 (2009). https://doi.org/10.1007/s11244-009-9229-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-009-9229-x

Keywords

Navigation