Skip to main content

Advertisement

Log in

Production of Biomass-Derived Chemicals and Energy: Chemocatalytic Conversions of Glycerol

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The growing production of biodiesel as a renewable source-based fuel leads to an increased amount of glycerol. Thus, it is a favorable starting material to obtain highly functionalized products. From a variety of catalytic reactions three examples, namely glycerol oxidation, glycerol hydrogenolysis and aqueous-phase reforming, were chosen for detailed studies in our group. The experimental focus for the oxidation of glycerol was set on preparation and detailed examination of supported Pt–Bi catalysts in batch reactions as well as in continuous experiments using a trickle bed reactor. For aqueous-phase reforming of glycerol to hydrogen the addition of tin to supported platinum catalysts was investigated. Ruthenium and copper based catalysts could be successfully applied in the hydrogenolysis of glycerol to 1,2-propanediol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Marchetti M, Miguel VU, Errazu AF (2007) Ren Sust Energy Rev 11:1300

    Article  CAS  Google Scholar 

  2. Biofuels International (2008) 2 (1)

  3. Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Green Chem 10:13

    Article  CAS  Google Scholar 

  4. Kimura H, Tsuto K, Wakisaka T, Kazumi Y, Inaya Y (1993) Appl Catal A 96:217

    Article  CAS  Google Scholar 

  5. Kimura H (1993) Appl Catal A 105:147

    Article  CAS  Google Scholar 

  6. Besson M, Garcia R, Gallezot P (1995) Appl Catal A 127:165

    Article  Google Scholar 

  7. Porta F, Prati L (2004) J Catal 224:397

    Article  CAS  Google Scholar 

  8. Dimitratos N, Lopez-Sanchez J, Lennon D, Porta F, Prati L, Villa A (2006) Catal Lett 108:147

    Article  CAS  Google Scholar 

  9. Dimitratos N, Messi C, Porta F, Prati L, Villa A (2006) J Mol Catal A: Chem 256:21

    Article  CAS  Google Scholar 

  10. Prati L, Villa A, Campione C, Spontoni P (2007) Top Catal 44:319

    Article  CAS  Google Scholar 

  11. Carrettin S, McMorn P, Johnston P, Griffin K, Hutchings GJ (2002) Chem Commun 696

  12. Carrettin S, McMorn P, Johnston P, Griffin K, Kiely CJ, Hutchings GJ (2003) Phys Chem Chem Phys 5:1329

    Article  CAS  Google Scholar 

  13. Carrettin S, McMorn P, Johnston P, Griffin K, Kiely CJ, Attard GA, Hutchings GJ (2004) Top Catal 27:131

    Article  CAS  Google Scholar 

  14. Ketchie WC, Fang Y, Wong MS, Murayama M, Davis RJ (2007) J Catal 250:94

    Article  CAS  Google Scholar 

  15. Ketchie WC, Murayama M, Davis RJ (2007) J Catal 250:264

    Article  CAS  Google Scholar 

  16. Varga S, Bauer R, Katsikis N, Hekmat D (2004) Chem Ing Tech 76:1306

    Article  Google Scholar 

  17. Enders D, Voith M, Lenzen A (2005) Angew Chem 117:1330

    Article  Google Scholar 

  18. Demirel-Guelen S, Lucas M, Claus P (2005) Catal Today 102–103:166

    Article  Google Scholar 

  19. Demirel S, Kern P, Lucas M, Claus P (2007) Catal Today 122:292

    Article  CAS  Google Scholar 

  20. Demirel S, Lucas M, Wärnå J, Salmi T, Murzin D, Claus P (2007) Top Catal 44:299

    Article  CAS  Google Scholar 

  21. Demirel S, Lehnert K, Lucas M, Claus P (2007) Appl Catal B 70:637

    Article  CAS  Google Scholar 

  22. Huber GW, Corma A (2007) Angew Chem Int Ed 46:7184

    Article  CAS  Google Scholar 

  23. Simonetti DA, Kunkes EL, Dumesic JA (2007) J Catal 247:298

    Article  CAS  Google Scholar 

  24. Soares RR, Simonetti DA, Dumesic JA (2006) Angew Chem Int Ed 45:3982

    Article  CAS  Google Scholar 

  25. Chheda JN, Huber GW, Dumesic JA (2007) Angew Chem Int Ed 46:7164

    Article  CAS  Google Scholar 

  26. Cortright RD, Davda RR, Dumesic JA (2002) Nature 418:964

    Article  CAS  Google Scholar 

  27. Gallezot P (2007) Catal Today 121:76

    Article  CAS  Google Scholar 

  28. Huber GW, Cortright RD, Dumesic JA (2004) Angew Chem Int Ed 43:1549

    Article  CAS  Google Scholar 

  29. Huber GW, Shabaker JW, Dumesic JA (2003) Science 300:2075

    Article  CAS  Google Scholar 

  30. Shabaker JW, Huber GW, Dumesic JA (2004) J Catal 222:180

    Article  CAS  Google Scholar 

  31. Wang S, Liu H (2007) Catal Lett 117:62

    Article  CAS  Google Scholar 

  32. Dasari M, Kiatsimkul P, Sutterlin W, Suppes G (2005) Appl Catal A 281:225

    Article  CAS  Google Scholar 

  33. Miyazawa T, Kusunoki Y, Kunimori K, Tomishige K (2006) J Catal 240:213

    Article  CAS  Google Scholar 

  34. Miyazawa T, Koso S, Kunimori K, Tomishige K (2007) Appl Catal A 318:244

    Article  CAS  Google Scholar 

  35. Miyazawa T, Koso S, Kuminori K, Tomishige K (2007) Appl Catal A 329:30

    Article  CAS  Google Scholar 

  36. Lahr D, Shanks B (2005) J Catal 232:386

    Article  CAS  Google Scholar 

  37. Maris E, Davis R (2007) J Catal 249:328

    Article  CAS  Google Scholar 

  38. Maris E, Ketchie W, Murayama M, Davis R (2007) J Catal 251:281

    Article  CAS  Google Scholar 

  39. Kusserow B, Schimpf S, Claus P (2003) Adv Synth Catal 345:289

    Article  CAS  Google Scholar 

  40. Coq B (1994) J Mol Catal 92:107

    Article  CAS  Google Scholar 

  41. Bae J (2008) Energy Fuels 22:223

    Article  CAS  Google Scholar 

  42. Lehnert K, Claus P (2008) Catal Commun 9:2543

    Article  CAS  Google Scholar 

  43. Berndt H, Mehner H, Claus P (1995) Chem Ing Tech 67:1332

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support provided by the Faudi-Stiftung is gratefully acknowledged. P.C. thanks the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Claus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandner, A., Lehnert, K., Bienholz, A. et al. Production of Biomass-Derived Chemicals and Energy: Chemocatalytic Conversions of Glycerol. Top Catal 52, 278–287 (2009). https://doi.org/10.1007/s11244-008-9164-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-008-9164-2

Keywords

Navigation