Skip to main content
Log in

The Effect of Acid Strength on the Conversion of Methanol to Olefins Over Acidic Microporous Catalysts with the CHA Topology

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The present work addresses the influence of acid strength on the stability and product selectivity of microporous catalysts with CHA framework type. The two studied catalysts, H-SAPO-34 and H-SSZ-13, have the same topology, density of acid sites (approximately one acid site per cage), and crystal size (0.2–2 microns), but their acid strength differ due to the framework composition. The difference in acid strength was determined by infrared spectroscopy, using CO as probe molecule. Catalytic tests were performed in a fixed bed flow reactor at 300–425 °C and WHSV = 6.0 h−1. It was observed that the acid strength has significant influence on reaction rates, enhancing the production rate of olefins in the reactor effluent as well as aromatics retained in the catalyst pores and leading to a lower optimal temperature of operation for the more acidic H-SSZ-13 catalyst. The activation and deactivation patterns and the intermediates formed are very similar for the two materials. The ethene to propene ratio increases with temperature and time on stream for both catalysts, and is higher over the more acidic H-SSZ-13 catalyst at similar reaction conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chorkendorff I, Niemantsverdriet JW (2003) In: Concepts of modern catalysis and kinetics. Wiley-VCH, Weinheim, ch 8

  2. Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044

    Article  CAS  Google Scholar 

  3. Chen JQ, Bozzano A, Glover B, Fuglerud T, Kvisle S (2005) Catal Today 106:103

    Article  CAS  Google Scholar 

  4. Bordiga S, Regli L, Cocina D, Lamberti C, Bjorgen M, Lillerud KP (2005) J Phys Chem B 109:2779

    Article  CAS  Google Scholar 

  5. Kvisle S, Fuglerud T, Kolboe S, Olsbye U, Lillerud KP, Vora BV (2008) In: Ertl H, Knözinger F, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, vol 6, 2nd edn. Wiley-VCH, ch 13.14

  6. Stocker M (1999) Microporous Mesoporous Mater 29:3

    Article  CAS  Google Scholar 

  7. Olsbye U, Bjoergen M, Svelle S, Lillerud K-P, Kolboe S (2005) Catal Today 106:108

    Article  CAS  Google Scholar 

  8. Chang CD, Silvestri AJ (1977) J Catal 47:249

    Article  CAS  Google Scholar 

  9. Lesthaeghe D, Van Speybroeck V, Marin GB, Waroquier M (2006) Angew Chem Int Ed 45:1714

    Article  CAS  Google Scholar 

  10. Marcus DM, McLachlan KA, Wildman MA, Ehresmann JO, Kletnieks PW, Haw JF (2006) Angew Chem Int Ed 45:3133

    Article  CAS  Google Scholar 

  11. Song WG, Marcus DM, Fu H, Ehresmann JO, Haw JF (2002) J Am Chem Soc 124:3844

    Article  CAS  Google Scholar 

  12. Dahl IM, Kolboe S (1993) Catal Lett 20:329

    Article  CAS  Google Scholar 

  13. Dahl IM, Kolboe S (1994) J Catal 149:458

    Article  CAS  Google Scholar 

  14. Arstad B, Kolboe S (2001) J Am Chem Soc 123:8137

    Article  CAS  Google Scholar 

  15. Arstad B, Kolboe S (2001) Catal Lett 71:209

    Article  CAS  Google Scholar 

  16. Goguen PW, Xu T, Barich DH, Skloss TW, Song WG, Wang ZK, Nicholas JB, Haw JF (1998) J Am Chem Soc 120:2650

    Article  CAS  Google Scholar 

  17. Mikkelsen O, Ronning PO, Kolboe S (2000) Microporous Mesoporous Mater 40:95

    Article  CAS  Google Scholar 

  18. Song WG, Haw JF, Nicholas JB, Heneghan CS (2000) J Am Chem Soc 122:10726

    Article  CAS  Google Scholar 

  19. Sassi A, Wildman MA, Ahn HJ, Prasad P, Nicholas JB, Haw JF (2002) J Phys Chem B 106:2294

    Article  CAS  Google Scholar 

  20. Sassi A, Wildman MA, Haw JF (2002) J Phys Chem B 106:8768

    Article  CAS  Google Scholar 

  21. Bjorgen M, Bonino F, Kolboe S, Lillerud KP, Zecchina A, Bordiga S (2003) J Am Chem Soc 125:15863

    Article  CAS  Google Scholar 

  22. Bjorgen M, Olsbye U, Kolboe S (2003) J Catal 215:30

    Article  CAS  Google Scholar 

  23. Bjorgen M, Olsbye U, Petersen D, Kolboe S (2004) J Catal 221:1

    Article  CAS  Google Scholar 

  24. Bjorgen M, Olsbye U, Svelle S, Kolboe S (2004) Catal Lett 93:37

    Article  CAS  Google Scholar 

  25. Svelle S, Bjorgen M, Kolboe S, Kuck D, Letzel M, Olsbye U, Sekiguchi O, Uggerud E (2006) Catal Lett 109:25

    Article  CAS  Google Scholar 

  26. Arstad B, Nicholas JB, Haw JF (2004) J Am Chem Soc 126:2991

    Article  CAS  Google Scholar 

  27. Svelle S, Olsbye U, Joensen F, Bjorgen M (2007) J Phys Chem C 111:17981

    Article  CAS  Google Scholar 

  28. Svelle S, Joensen F, Nerlov J, Olsbye U, Lillerud KP, Kolboe S, Bjorgen M (2006) J Am Chem Soc 128:14770

    Article  CAS  Google Scholar 

  29. Bjorgen M, Svelle S, Joensen F, Nerlov J, Kolboe S, Bonino F, Palumbo L, Bordiga S, Olsbye U (2007) J Catal 249:195

    Article  CAS  Google Scholar 

  30. Dessau RM (1986) J Catal 99:111

    Article  CAS  Google Scholar 

  31. Dessau RM, Lapierre RB (1982) J Catal 78:136

    Article  CAS  Google Scholar 

  32. Svelle S, Ronning PA, Kolboe S (2004) J Catal 224:115

    Article  CAS  Google Scholar 

  33. Svelle S, Ronning PO, Olsbye U, Kolboe S (2005) J Catal 234:385

    Article  CAS  Google Scholar 

  34. Barger P (2002) In: Guisnet M, Gilson J-P (eds) Zeolites for cleaner techonologies, vol 3. Imperial College Press, London, ch 12

  35. Wilson S, Barger P (1999) Microporous Mesoporous Mater 29:117

    Article  CAS  Google Scholar 

  36. Zhu Q, Kondo JN, Ohnuma R, Kubota Y, Yamaguchi M, Tatsumi T (2007) Microporous Mesoporous Mater. doi:10.1016/j.micromeso.2007.09.026

    Google Scholar 

  37. Yuen L-T, Zones SI, Harris TV, Gallegos EJ, Auroux A (1994) Microporous Mater 2:105

    Article  CAS  Google Scholar 

  38. Dahl IM, Mostad H, Akporiaye D, Wendelbo R (1999) Microporous Mesoporous Mater 29:185

    Article  CAS  Google Scholar 

  39. Magnoux P, Roger P, Canaff C, Fouche V, Gnep NS, Guisnet M (1987) Stud Surf Sci Catal 34:317

    Article  CAS  Google Scholar 

  40. Robson H, Lillerud KP (2001) In: Verified synthesis of zeolitic materials, 2nd edn. Elsevier, Amsterdam, ch 2

  41. Zecchina A, Spoto G, Bordiga S (2001) In: Handbook of vibrational spectroscopy, vol 4. Wiley, New York

  42. Bordiga S, Platero EE, Arean CO, Lamberti C, Zecchina A (1992) J Catal 137:179

    Article  CAS  Google Scholar 

  43. Kolboe S (1986) Acta Chem Scand A 40:711

    Article  Google Scholar 

  44. Nawaz S, Kolboe S, Stocker M (1994) Stud Surf Sci Catal 81:393

    Article  CAS  Google Scholar 

  45. Schulz H, Siwei Z, Kusterer H (1991) Stud Surf Sci Catal 60:281

    Article  CAS  Google Scholar 

  46. Bjørgen M (2000) Master thesis, University of Oslo

  47. Song WG, Fu H, Haw JF (2001) J Am Chem Soc 123:4749

    Article  CAS  Google Scholar 

  48. Svelle S, Aravinthan S, Bjorgen M, Lillerud KP, Kolboe S, Dahl IM, Olsbye U (2006) J Catal 241:243

    Article  CAS  Google Scholar 

  49. Marcus DM, Song WG, Ng LL, Haw JF (2002) Langmuir 18:8386

    Article  CAS  Google Scholar 

  50. Song WG, Fu H, Haw JF (2001) J Phys Chem B 105:12839

    Article  CAS  Google Scholar 

  51. Bjorgen M, Bonino F, Arstad B, Kolboe S, Lillerud KP, Zecchina A, Bordiga S (2005) Chem Phys Chem 6:232

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Unni Olsbye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleken, F., Bjørgen, M., Palumbo, L. et al. The Effect of Acid Strength on the Conversion of Methanol to Olefins Over Acidic Microporous Catalysts with the CHA Topology. Top Catal 52, 218–228 (2009). https://doi.org/10.1007/s11244-008-9158-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-008-9158-0

Keywords

Navigation