Skip to main content
Log in

Nanoengineering catalyst supports via layer-by-layer surface functionalization

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Recent progress in the layer-by-layer surface modification of oxides for the preparation of highly active and stable gold nanocatalysts is briefly reviewed. Through a layer-by-layer surface modification approach, the surfaces of various catalyst supports including both porous and nonporous silica materials and TiO2 nanoparticles were modified with monolayers or multilayers of distinct metal oxide ultra-thin films. The surface-modified materials were used as supports for Au nanoparticles, resulting in highly active nanocatalysts for low-temperature CO oxidation. Good stability against sintering under high-temperature treatment was achieved for a number of the Au catalysts through surface modification of the support material. The surface modification of supports can be a viable route to control both the composition and structure of support and nanoparticle interfaces, thereby tailoring the stability and activity of the supported catalyst systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.Y. Turova E.P. Turevskaya V.G. Kessler M.I. Yanovskaya (2002) The Chemistry of Metal Alkoxides Kluwer Academic Publishers Boston

    Google Scholar 

  2. K. Asakura Y. Iwasawa (1991) J. Phys. Chem. 95 1711 Occurrence Handle1:CAS:528:DyaK3MXhtV2nur0%3D Occurrence Handle10.1021/j100157a042

    Article  CAS  Google Scholar 

  3. K. Asakura J. Inukai Y. Iwasawa (1992) J. Phys. Chem. 96 829 Occurrence Handle1:CAS:528:DyaK38XhtlKqu70%3D Occurrence Handle10.1021/j100181a056

    Article  CAS  Google Scholar 

  4. I. Ichinose, H. Senzu and T. Kunitake, Chem. Lett. (1996) 831

  5. I. Ichinose H. Senzu T. Kunitake (1997) Chem. Mater. 9 1296 Occurrence Handle1:CAS:528:DyaK2sXjvVSrtr4%3D Occurrence Handle10.1021/cm970008g

    Article  CAS  Google Scholar 

  6. W.F. Yan B. Chen S.M. Mahurin E.W. Hagaman S. Dai S.H. Overbury (2004) J. Phys. Chem. B 108 2793 Occurrence Handle1:CAS:528:DC%2BD2cXptVKluw%3D%3D Occurrence Handle10.1021/jp037713z

    Article  CAS  Google Scholar 

  7. W.F. Yan V. Petkov S.M. Mahurin S.H. Overbury S. Dai (2005) Catal. Commun. 6 404 Occurrence Handle1:CAS:528:DC%2BD2MXltFGrsLw%3D Occurrence Handle10.1016/j.catcom.2005.04.004

    Article  CAS  Google Scholar 

  8. W.F. Yan S.M. Mahurin B. Chen S.H. Overbury S. Dai (2005) J. Phys. Chem. B 109 15489 Occurrence Handle1:CAS:528:DC%2BD2MXmtV2kt7w%3D Occurrence Handle10.1021/jp052006m

    Article  CAS  Google Scholar 

  9. W.F. Yan S.M. Mahurin Z.W. Pan S.H. Overbury S. Dai (2005) J. Am. Chem. Soc. 127 10480 Occurrence Handle1:CAS:528:DC%2BD2MXmtVWju7o%3D Occurrence Handle10.1021/ja053191k

    Article  CAS  Google Scholar 

  10. W.F. Yan S.M. Mahurin S.H. Overbury S. Dai (2005) Chem. Mater. 17 1923 Occurrence Handle1:CAS:528:DC%2BD2MXit1Cms7g%3D Occurrence Handle10.1021/cm048118s

    Article  CAS  Google Scholar 

  11. M Haruta (2002) Cattech 6 102 Occurrence Handle1:CAS:528:DC%2BD38XmsFGrsLg%3D Occurrence Handle10.1023/A:1020181423055

    Article  CAS  Google Scholar 

  12. S.J. Lee A. Gavriilidis (2002) J. Catal. 206 305 Occurrence Handle1:CAS:528:DC%2BD38Xit1yjsbc%3D Occurrence Handle10.1006/jcat.2001.3500

    Article  CAS  Google Scholar 

  13. S. Tsubota M. Haruta T. Kobayashi A. Ueda Y. Nakahara (1991) Stud. Surf. Sci. Catal. 63 695 Occurrence Handle1:CAS:528:DyaK3MXlvFSksbo%3D Occurrence Handle10.1016/S0167-2991(08)64634-0

    Article  CAS  Google Scholar 

  14. M. Haruta N. Yamada T. Kobayashi S. Iijima (1989) J. Catal. 115 301 Occurrence Handle1:CAS:528:DyaL1MXhtVamsbY%3D Occurrence Handle10.1016/0021-9517(89)90034-1

    Article  CAS  Google Scholar 

  15. G.C. Bond D.T. Thompson (1999) Catal. Rev.-Sci. Eng. 41 319 Occurrence Handle1:CAS:528:DyaK1MXmvFehsLk%3D Occurrence Handle10.1081/CR-100101171

    Article  CAS  Google Scholar 

  16. G.J. Hutchings (2004) Gold Bull. 37 3 Occurrence Handle1:CAS:528:DC%2BD2cXnt1ems7Y%3D

    CAS  Google Scholar 

  17. F. Moreau, G.C. Bond and A.O. Taylor, Chem. Commun. (2004) 1642

  18. M. Valden X. Lai D.W. Goodman (1998) Science 281 1647 Occurrence Handle1:CAS:528:DyaK1cXmtVSqu7w%3D Occurrence Handle10.1126/science.281.5383.1647

    Article  CAS  Google Scholar 

  19. M.S. Chen D.W. Goodman (2004) Science 306 252 Occurrence Handle1:CAS:528:DC%2BD2cXotFWnsLw%3D Occurrence Handle10.1126/science.1102420

    Article  CAS  Google Scholar 

  20. E.E. Stangland K.B. Stavens R.P. Andres W.N. Delgass (2000) J. Catal. 191 332 Occurrence Handle1:CAS:528:DC%2BD3cXisFelsb0%3D Occurrence Handle10.1006/jcat.1999.2809

    Article  CAS  Google Scholar 

  21. S.D. Lin M. Bollinger M.A. Vannice (1993) Catal. Lett. 17 245 Occurrence Handle1:CAS:528:DyaK3sXit1Smtbk%3D Occurrence Handle10.1007/BF00766147

    Article  CAS  Google Scholar 

  22. J.D. Grunwaldt C. Kiener C. Wogerbauer A. Baiker (1999) J. Catal. 181 223 Occurrence Handle1:CAS:528:DyaK1MXpsVyjtw%3D%3D Occurrence Handle10.1006/jcat.1998.2298

    Article  CAS  Google Scholar 

  23. J.D. Grunwaldt A. Baiker (1999) J. Phys. Chem. B 103 1002 Occurrence Handle1:CAS:528:DyaK1MXlsVOgsw%3D%3D Occurrence Handle10.1021/jp983206j

    Article  CAS  Google Scholar 

  24. M.A.P. Dekkers M.J. Lippits B.E. Nieuwenhuys (1998) Catal. Lett. 56 195 Occurrence Handle1:CAS:528:DyaK1MXmslSqsw%3D%3D Occurrence Handle10.1023/A:1019037902776

    Article  CAS  Google Scholar 

  25. W.F. Yan, B. Chen, S.M. Mahurin, S. Dai and S.H. Overbury, Chem. Commun. (2004) 1918

  26. W.F. Yan B. Chen S.M. Mahurin V. Schwartz D.R. Mullins A.R. Lupini J. Pennycook S. Dai S.H. Overbury (2005) J. Phys. Chem. B 109 10676 Occurrence Handle1:CAS:528:DC%2BD2MXjvFWgsb8%3D Occurrence Handle10.1021/jp044091o

    Article  CAS  Google Scholar 

  27. M.J. Kahlich H.A. Gasteiger R.J. Behm (1999) J. Catal. 182 430 Occurrence Handle1:CAS:528:DyaK1MXhs1Sgsrc%3D Occurrence Handle10.1006/jcat.1998.2333

    Article  CAS  Google Scholar 

  28. M.M. Schubert S. Hackenberg A.C. Veen Particlevan M. Muhler V. Plzak R.J. Behm (2001) J. Catal. 197 113 Occurrence Handle1:CAS:528:DC%2BD3cXptVGntbg%3D Occurrence Handle10.1006/jcat.2000.3069

    Article  CAS  Google Scholar 

  29. F. Boccuzzi A. Chiorino M. Manzoli D. Andreeva T. Tabakova (1999) J. Catal. 188 176 Occurrence Handle1:CAS:528:DyaK1MXntVCnt7o%3D Occurrence Handle10.1006/jcat.1999.2636

    Article  CAS  Google Scholar 

  30. M. Date M. Okumura S. Tsubota M. Haruta (2004) Angew. Chem.-Int. Edit. 43 2129 Occurrence Handle1:CAS:528:DC%2BD2cXjsFSjsb8%3D Occurrence Handle10.1002/anie.200453796

    Article  CAS  Google Scholar 

  31. S.H. Overbury L. Ortiz-Soto H.G. Zhu B. Lee M.D. Amiridis S. Dai (2004) Catal. Lett. 95 99 Occurrence Handle1:CAS:528:DC%2BD2cXkslylsb8%3D Occurrence Handle10.1023/B:CATL.0000027281.96719.42

    Article  CAS  Google Scholar 

  32. M.T. Bore, H.N. Pham, T.L. Ward and A.K. Datye, Chem. Commun. (2004) 2620

  33. M.T. Bore H.N. Pham E.E. Switzer T.L. Ward A. Fukuoka A.K. Datye (2005) J. Phys. Chem. B 109 2873 Occurrence Handle1:CAS:528:DC%2BD2MXlsFCrtg%3D%3D Occurrence Handle10.1021/jp045917p

    Article  CAS  Google Scholar 

  34. A. Knell P. Barnickel A. Baiker A. Wokaun (1992) J. Catal. 137 306 Occurrence Handle1:CAS:528:DyaK38Xmt1Sqsrs%3D Occurrence Handle10.1016/0021-9517(92)90159-F

    Article  CAS  Google Scholar 

  35. B. Yoon H. Hakkinen U. Landman A.S. Worz J.M. Antonietti S. Abbet K. Judai U. Heiz (2005) Science 307 403 Occurrence Handle1:CAS:528:DC%2BD2MXksFyjuw%3D%3D Occurrence Handle10.1126/science.1104168

    Article  CAS  Google Scholar 

  36. J. Guzman B.C. Gates (2004) J. Am. Chem. Soc. 126 2672 Occurrence Handle1:CAS:528:DC%2BD2cXht1Wisbk%3D Occurrence Handle10.1021/ja039426e

    Article  CAS  Google Scholar 

  37. L.M. Molina B. Hammer (2003) Phys. Rev. Lett. 90 206102 Occurrence Handle1:CAS:528:DC%2BD3sXktVarur4%3D Occurrence Handle10.1103/PhysRevLett.90.206102

    Article  CAS  Google Scholar 

  38. Q. Fu H. Saltsburg M. Flytzani-Stephanopoulos (2003) Science 301 935 Occurrence Handle1:CAS:528:DC%2BD3sXmt1els7s%3D Occurrence Handle10.1126/science.1085721

    Article  CAS  Google Scholar 

  39. S. Carrettin P. Concepcion A. Corma J.M.L Nieto V.F. Puntes (2004) Angew. Chem.-Int. Edit. 43 2538 Occurrence Handle1:CAS:528:DC%2BD2cXkt1ejtrs%3D Occurrence Handle10.1002/anie.200353570

    Article  CAS  Google Scholar 

  40. G.K. Bethke H.H. Kung (2000) Appl. Catal. A-Gen. 194 43 Occurrence Handle10.1016/S0926-860X(99)00352-X

    Article  Google Scholar 

  41. F. Cotton G. Wilkinson (1972) Advanced Inorganic chemistry EditionNumber3 Wiley New York

    Google Scholar 

  42. C. Suryanarayana M.G. Norton (1998) X-ray Diffraction Plenum Press New York

    Google Scholar 

  43. J. Nawrocki (1997) J. Chromatogr. A 779 29 Occurrence Handle1:CAS:528:DyaK2sXltVCqtbg%3D Occurrence Handle10.1016/S0021-9673(97)00479-2

    Article  CAS  Google Scholar 

  44. R.C. Mehrotra I. Rothwell A. Singh D.C. Bradley (2002) Alkoxo and Aryloxo Derivatives of Metals Academic Press San Diego

    Google Scholar 

  45. K. Folting W.E. Streib K.G. Caulton O. Poncelet L.G. Hubertpfalzgraf (1991) Polyhedron 10 1639 Occurrence Handle1:CAS:528:DyaK3MXms12hsrw%3D Occurrence Handle10.1016/S0277-5387(00)83775-4

    Article  CAS  Google Scholar 

  46. R.H. Cayton M.H. Chisholm E.R. Davidson V.F. Distasi P. Du J.C. Huffman (1991) Inorg. Chem. 30 1020 Occurrence Handle1:CAS:528:DyaK3MXhtFeqtrw%3D Occurrence Handle10.1021/ic00005a027

    Article  CAS  Google Scholar 

  47. P. Mukherjee C.R. Patra A. Ghosh R. Kumar M. Sastry (2002) Chem. Mat. 14 1678 Occurrence Handle1:CAS:528:DC%2BD38Xhslamur0%3D Occurrence Handle10.1021/cm010372m

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, W., Mahurin, S.M., Overbury, S.H. et al. Nanoengineering catalyst supports via layer-by-layer surface functionalization. Top Catal 39, 199–212 (2006). https://doi.org/10.1007/s11244-006-0058-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-006-0058-x

Keywords

Navigation