Skip to main content
Log in

Preparation and electrochemical sensing performances toward bromate and Cr(VI) of two γ-octamolybdate-based complexes decorated by in situ transformation ligand

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Two octamolybdate-based complexes formulated by [M2(H2O)4(γ-Mo8O26)(HDIBA)2]·H2O [M = Co (1), Zn (2), DIBA = 3,5-di(1H-imidazol-1-yl)benzoic acid], were synthesized successfully by using hydrothermal method in the presence of 3,5-di(1H-imidazol-1-yl) benzonitrile (DICN) as initial ligand. The DIBA ligand was generated in situ from the hydrolysis of DICN ligand. The γ-octamolybdate polyoxoanion was decorated by two DIBA ligands relying on Mo−O covalent bonds between the carboxyl oxygen atom of DIBA ligand and Mo atom of polyoxoanion. The transition metal centers joined in pairs these modified γ-octamolybdate polyoxoanions into a 1D chain, which were further aggregated to result in a 2D layer. The investigations on the electrochemical performances indicated that the two complexes displayed electrocatalytic and electrochemical sensing activities for bromate and Cr(VI), which provide potential electrode materials in preparing the electrochemical sensors and electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Weinberg HS, Delcomyn CA, Unnam V (2003) Environ Sci Technol 37:3104–3110

    Article  PubMed  CAS  Google Scholar 

  2. Crofton KM (2006) Toxicology 221:212–216

    Article  PubMed  CAS  Google Scholar 

  3. Moore MM, Chen T (2006) Toxicology 221:190–196

    Article  PubMed  CAS  Google Scholar 

  4. Chen YN, Liu YQ, Li YP, Wu YX, Chen YR, Liu YH, Zhang JC, Xu FT, Li ML, Li LSZ (2020) Chem Eng J 388:124313

    Article  CAS  Google Scholar 

  5. DesMarias TL, Costa M (2019) Curr Opin Toxicol 14:1–7

    Article  Google Scholar 

  6. Teh HB, Li SFY (2015) J Chromatogr A 1383:112–120

    Article  PubMed  CAS  Google Scholar 

  7. Martı́nez-Bravo Y, Roig-Navarro AF, López FJ, Hernández F (2001) J Chromatogr A 926:265–274

    Article  PubMed  Google Scholar 

  8. Zhang XY, Ma QQ, Liu XF, Niu HW, Luo L, Li RF, Feng X (2022) Food Chem 382:132379

    Article  PubMed  CAS  Google Scholar 

  9. Ghosh B, Roy S, Bardhan S, Mondal D, Saha I, Ghosh S, Basu R, Karmakar P, Das K, Das S (2022) J Fluoresc 32:1489–1500

    Article  PubMed  CAS  Google Scholar 

  10. Lee Y-G, Lee HJ, Jang A (2017) Sensor Actuat B-chem 244:157–166

    Article  CAS  Google Scholar 

  11. Chen Y, Li F, Li S, Zhang L, Sun M (2022) Inorg Chem Commun 135:109084

    Article  CAS  Google Scholar 

  12. Khalilpour H, Shafiee P, Darbandi A, Yusuf M, Mahmoudi S, Moazzami Goudarzi Z, Mirzamohammadi S (2021) J Alloys Compd 3:129–139

    Google Scholar 

  13. Papagianni GG, Stergiou DV, Armatas GS, Kanatzidis MG, Prodromidis MI (2012) Sensor Actuat B-chem 173:346–353

    Article  CAS  Google Scholar 

  14. Ali B, Laffir F, Kailas L, Armstrong G, O’Connell R, McCormac T (2019) Eur J Inorg Chem 2019:394–401

    Article  CAS  Google Scholar 

  15. Wang XL, Pan X, Wang X, Liu GC, Lin HY, Zhang S (2019) Transit Metal Chem 44:207–217

    Article  CAS  Google Scholar 

  16. Herrmann S, De Matteis L, de la Fuente JM, Mitchell SG, Streb C (2017) Angew Chem Int Ed 56:1667–1670

    Article  CAS  Google Scholar 

  17. Chai D, Hou Y, O’Halloran KP, Pang H, Ma H, Wang GN, Wang XM (2018) Chem Electro Chem 5:3443–3450

    CAS  Google Scholar 

  18. Wang CL, Rong S, Zhao YQ, Wang XM, Ma HY (2021) Transit Metal Chem 46:335–343

    Article  CAS  Google Scholar 

  19. Iwano T, Miyazawa S, Uchida S (2020) Inorg Chim Acta 499:119204–119210

    Article  Google Scholar 

  20. Li N, Liu J, Dong B-X, Lan Y-Q (2020) Angew Chem Int Ed 59:20779–20793

    Article  CAS  Google Scholar 

  21. Liu XZ, Cui LP, Yu K, Lv JH, Liu YH, Ma YJ, Zhou BB (2021) Inorg Chem 60:14072–14082

    Article  PubMed  CAS  Google Scholar 

  22. Zhang YC, Chen YZ, Chang ZH, Liu QQ, Wang X-L (2022) Polyhedron 221:115874

    Article  CAS  Google Scholar 

  23. Liu Q-Q, Wang X-L, Lin H-Y, Chang Z-H, Zhang Y-C, Tian Y, Lu J-J, Yu L (2021) Dalton Trans 50:9450–9456

    Article  PubMed  CAS  Google Scholar 

  24. Tian A-X, Yang Y, Ni H-P, Liu G-Y, Fu Y-B, Yang M-L, Liu G-C, Ying J (2019) Transit Metal Chem 44:303–309

    Article  CAS  Google Scholar 

  25. Niu J-Q, An W-T, Zhang X-J, Ma Y-Y, Han Z-G (2021) Chem Eng J 418:129408

    Article  CAS  Google Scholar 

  26. Liu JX, Zhang XB, Li YL, Huang SL, Yang GY (2020) Coordin. Chem Rev 414:213260–213295

    CAS  Google Scholar 

  27. Li CF, Mizuno N, Yamaguchi K, Suzuki K (2019) J Am Chem Soc 141:7687–7692

    Article  PubMed  CAS  Google Scholar 

  28. Du DY, Qin JS, Li SL, Su ZM, Lan YQ (2014) Chem Soc Rev 43:4615–4632

    Article  PubMed  CAS  Google Scholar 

  29. Wang X, Tian AX, Wang XL (2015) RSC Adv 5:41155–41168

    Article  CAS  Google Scholar 

  30. Roy S, Mumbaraddi D, Jain A, George SJ, Peter SC (2018) Inorg Chem 57:590–601

    Article  PubMed  CAS  Google Scholar 

  31. Tang Q, Zhang C-J, Zhang C-H, Wang H-Y, Chen Y-G, Liu S-X (2012) Inorg Chem Commun 15:238–242

    Article  CAS  Google Scholar 

  32. Chen X-M, Tong M-L (2007) Accounts Chem Res 40:162–170

    Article  Google Scholar 

  33. Wang X, Zhang T, Li Y, Lin J, Li H, Wang X-L (2020) Inorg Chem 59:17583–17590

    Article  PubMed  CAS  Google Scholar 

  34. Wang X, Li H, Lin JF, Wang CY, Wang X-L (2021) Inorg Chem 60:19287–19296

    Article  PubMed  CAS  Google Scholar 

  35. Wang X, Li YH, Zhang T, Ma SJ, Wang XL (2021) CrystEngComm 23:3477–3487

    Article  CAS  Google Scholar 

  36. Aijaz A, Sañudo EC, Bharadwaj PK (2011) Cryst Growth Des 11:1122–1134

    Article  CAS  Google Scholar 

  37. Wang X, Lin L, Zhang R, Wang X (2017) Transit Metal Chem 42:203–210

    Article  Google Scholar 

  38. Sheldrick GM (2014) SHELXS-2014. Program for Structure Solution; University of Göottingen, Germany

    Google Scholar 

  39. Brown ID, Altermatt D (1985) Acta Crystallogr Sect B 41:244–247

    Article  Google Scholar 

  40. Klemperer WG, Shum W (1976) J Am Chem Soc 98:8291–8293

    Article  CAS  Google Scholar 

  41. Li L, Wang X, Xu N, Chang ZH, Liu GC, Lin HY, Wang XL (2020) CrystEngComm 22:8322–8329

    Article  CAS  Google Scholar 

  42. Wang X, Li YH, Zhang T, Ma SJ, Wang XL (2020) J Coord Chem 73:2533–2545

    Article  CAS  Google Scholar 

  43. Liu RJ, Luo YY, Zheng YH, Zhang GJ, Streb C (2020) Chem Commun 56:9465–9468

    Article  CAS  Google Scholar 

  44. Xin X, Hu N, Ma YY, Wang YL, Hou L, Zhang H, Han ZG (2020) Dalton Trans 49:4570–4577

    Article  PubMed  CAS  Google Scholar 

  45. Wang YL, Ma YY, Zhao Q, Hou L, Han ZG (2020) Sensor Actuat B-chem 305:127469

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (No. 21771025) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Ling-jie Zhang and Xiang Wang prepared the main manuscript text and figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xiang Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests. We declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 225 KB)

Supplementary file2 (DOCX 354 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Lj., Wang, X., Yang, Pz. et al. Preparation and electrochemical sensing performances toward bromate and Cr(VI) of two γ-octamolybdate-based complexes decorated by in situ transformation ligand. Transit Met Chem 47, 293–300 (2022). https://doi.org/10.1007/s11243-022-00512-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-022-00512-9

Navigation