Skip to main content
Log in

Chemistry of vinylidene complexes—XXVII—new µ-vinylidene MnPt complexes with platinum-coordinated 1-adamantyl isocyanide ligand: spectroscopic, structural and electrochemical study

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

New binuclear MnPt µ-vinylidene complexes Cp(CO)2Mn(µ-C=CHPh)Pt(CN–Ad)(L) [L=PPh3 (1a), P(OPri)3 (2a)] bearing a terminal platinum-coordinated 1-adamantyl isocyanide ligand were prepared by the treatment of Cp(CO)2Mn(µ-C=CHPh)Pt(CO)(L) [L=PPh3 (1b), P(OPri)3 (2b)] with CN-Ad. At the same time the reaction between Cp(CO)2Mn(µ-C=CHPh)Pt(L)2 [L=PPh3 (1c), P(OPri)3 (2c)] and CN-Ad did not proceed. The new complexes were characterized by IR and 1H, 13C, 31P NMR spectroscopy. The molecular structure of Cp(CO)2Mn(µ-C=CHPh)Pt(CN–Ad)[P(OPri)3] (2a) was determined by an X-ray diffraction study. The redox properties of the new complexes and their reactions of chemical oxidation were studied. An influence of the platinum-coordinated 1-adamantyl isocyanide ligand on the properties of the synthesized µ-vinylidene compounds 1a and 2a was revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2

Similar content being viewed by others

Notes

  1. The application of different working electrodes offers an opportunity to study the oxidation and reduction properties of compounds in the wide range of accessible potentials. The measurement region of potentials in acetonitrile (vs. Ag/0.1 M AgNO3 in MeCN) is from 0.30 to − 3.20 V at DME, from 2.00 to − 2.00 V, and from 2.00 to − 2.50 V at the Pt and GC electrodes, respectively.

References

  1. Giustiniano M, Basso A, Mercalli V et al (2017) To each his own: isonitriles for all flavors. Functionalized isocyanides as valuable tools in organic synthesis. Chem Soc Rev 46:1295–1357. https://doi.org/10.1039/C6CS00444J

    Article  PubMed  CAS  Google Scholar 

  2. Altundas B, Marrazzo J-PR, Fleming FF (2020) Metalated isocyanides: formation, structure, and reactivity. Org Biomol Chem 18:6467–6482. https://doi.org/10.1039/D0OB01340D

    Article  PubMed  CAS  Google Scholar 

  3. Lygin AV, de Meijere A (2010) Isocyanides in the synthesis of nitrogen heterocycles. Angew Chem Int Ed 49:9094–9124. https://doi.org/10.1002/anie.201000723

    Article  CAS  Google Scholar 

  4. Boyarskiy VP, Bokach NA, Luzyanin KV, Kukushkin VY (2015) Metal-mediated and metal-catalyzed reactions of isocyanides. Chem Rev 115:2698–2779. https://doi.org/10.1021/cr500380d

    Article  PubMed  CAS  Google Scholar 

  5. Collet JW, Roose TR, Ruijter E et al (2020) Base metal catalyzed isocyanide insertions. Angew Chem Int Ed 59:540–558. https://doi.org/10.1002/anie.201905838

    Article  CAS  Google Scholar 

  6. Knorn M, Lutsker E, Reiser O (2020) Isonitriles as supporting and non-innocent ligands in metal catalysis. Chem Soc Rev 49:7730–7752. https://doi.org/10.1039/d0cs00223b

    Article  PubMed  CAS  Google Scholar 

  7. Sutton GD, Olumba ME, Nguyen YH, Teets TS (2021) The diverse functions of isocyanides in phosphorescent metal complexes. Dalton Trans 50:17851–17863. https://doi.org/10.1039/d1dt03312c

    Article  PubMed  CAS  Google Scholar 

  8. Angelici RJ, Lazar M (2008) Isocyanide ligands adsorbed on metal surfaces: Applications in catalysis, nanochemistry, and molecular electronics. Inorg Chem 47:9155–9165. https://doi.org/10.1021/ic800513t

    Article  PubMed  CAS  Google Scholar 

  9. Massarotti A, Brunelli F, Aprile S et al (2021) Medicinal chemistry of isocyanides. Chem Rev 121:10742–10788. https://doi.org/10.1021/acs.chemrev.1c00143

    Article  PubMed  CAS  Google Scholar 

  10. Galli U, Tron GC, Purghè B et al (2020) Metabolic fate of the isocyanide moiety: are isocyanides pharmacophore groups neglected by medicinal chemists? Chem Res Toxicol 33:955–966. https://doi.org/10.1021/acs.chemrestox.9b00504

    Article  PubMed  CAS  Google Scholar 

  11. Zhang X, Evanno L, Poupon E (2020) Biosynthetic routes to natural isocyanides. Eur J Org Chem 2020:1919–1929. https://doi.org/10.1002/ejoc.201901694

    Article  CAS  Google Scholar 

  12. Michelin RA, Pombeiro AJL, Guedes da Silva MFC (2001) Aminocarbene complexes derived from nucleophilic addition to isocyanide ligands. Coord Chem Rev 218:75–112. https://doi.org/10.1016/S0010-8545(01)00358-7

    Article  CAS  Google Scholar 

  13. Joshi KK, Mills OS, Pauson PL et al (1965) An iron complex with a bridging isonitrile group. Chem Commun I:181–182. https://doi.org/10.1039/c19650000181

    Article  Google Scholar 

  14. Adams RD, Cotton FA, Troup JM (1974) Low-valent metal isocyanine complexes. V. Structure and dynamical stereochemistry of bis(pentahaptocyclopentadienyl)tricarbonyl(tert-butyl isocyanide)diiron(Fe-Fe),(η5-C5H5)2F22(CO)3[CNC(CH3)3]. Inorg Chem 13:257–262. https://doi.org/10.1021/ic50132a003

    Article  CAS  Google Scholar 

  15. Marchetti F (2018) Constructing organometallic architectures from aminoalkylidyne diiron complexes. Eur J Inorg Chem 2018:3987–4003. https://doi.org/10.1002/ejic.201800659

    Article  CAS  Google Scholar 

  16. Marchetti F, Zacchini S, Zanotti V (2015) C-N coupling of isocyanide ligands promoted by acetylide addition to diiron aminocarbyne complexes. Organometallics 34:3658–3664. https://doi.org/10.1021/acs.organomet.5b00515

    Article  CAS  Google Scholar 

  17. Arrigoni F, Bertini L, De Gioia L et al (2017) Mechanistic insight into electrocatalytic H2 production by [Fe2(CN){μ-CN(Me)2}(μ-CO)(CO)(Cp)2]: effects of dithiolate replacement in [FeFe] hydrogenase models. Inorg Chem 56:13852–13864. https://doi.org/10.1021/acs.inorgchem.7b01954

    Article  PubMed  CAS  Google Scholar 

  18. Arrigoni F, Bertini L, De Gioia L et al (2020) On the importance of cyanide in diiron bridging carbyne complexes, unconventional [FeFe]-hydrogenase mimics without dithiolate: an electrochemical and DFT investigation. Inorg Chim Acta 510:119745. https://doi.org/10.1016/j.ica.2020.119745

    Article  CAS  Google Scholar 

  19. Knorr M, Strohmann C (1998) Synthesis, reactivity, and molecular structures of bis(diphenylphosphanyl)amine- and bis(diphenylphosphanyl)amide-bridged heterobimetallic μ-isonitrile- and μ-aminocarbyne complexes (Fe−Pt). Eur J Inorg Chem 1998:495–499. https://doi.org/10.1002/(SICI)1099-0682(199804)1998:4%3c495::AID-EJIC495%3e3.0.CO;2-U

    Article  Google Scholar 

  20. Knorr M, Strohmann C (1999) Syntheses, structures, and reactivity of dinuclear Molybdenum−Platinum and Tungsten−Platinum complexes with bridging carbonyl, sulfur dioxide, isonitrile, and aminocarbyne ligands and a dppa backbone (dppa = Ph2PNHPPh2). Organometallics 18:248–257. https://doi.org/10.1021/om980756v

    Article  CAS  Google Scholar 

  21. Knorr M, Strohmann C (2000) Reactivity of silyl-substituted heterobimetallic Iron-Platinum hydride complexes towards unsaturated molecules, I alkyne insertions into the Platinum-hydride bond, phosphane-induced σ-alkenyl – µ-vinylidene rearrangements and formation of µ-isonitrile. Eur J Inorg Chem. https://doi.org/10.1002/(SICI)1099-0682(200002)2000:2%3c241::AID-EJIC241%3e3.0.CO;2-Y

    Article  Google Scholar 

  22. Braunstein P, Knorr M, Stährfeldt T (1994) Heterobimetallic templates for Carbon-Carbon bond formation by migratory insertion reactions involving CO, isonitriles or olefins. J Chem Soc, Chem Commun 14:1913–1914. https://doi.org/10.1039/C39940001913

    Article  Google Scholar 

  23. Knorr M, Jourdain I, Mohamed AS et al (2015) Synthesis and reactivity of bis(diphenylphosphino)amine-bridged heterobimetallic Iron-Platinum μ-isonitrile and μ-aminocarbyne complexes. J Organomet Chem 780:70–85. https://doi.org/10.1016/j.jorganchem.2014.12.028

    Article  CAS  Google Scholar 

  24. Chudin OS, Verpekin VV, Kondrasenko AA et al (2020) The new μ-phenylvinylidene RePt complexes containing Platinum-bound 1-(isocyanomethylsulfonyl)- 4-methylbenzene. J Sib Fed Univ Chem 13:489–498. https://doi.org/10.17516/1998-2836-0200

    Article  Google Scholar 

  25. Kalinin VN, Derunov VV, Lusenkova MA et al (1989) Reactions of vinylidene and allenylidene cymantrene derivatives with isonitriles. J Organomet Chem 379:303–309. https://doi.org/10.1016/0022-328X(89)85170-8

    Article  CAS  Google Scholar 

  26. Antonova AB, Kovalenko SV, Petrovsky ED et al (1985) Chemistry of vinylidene complexes. III. Binuclear manganese-platinum complexes with bridging phenylvinylidene ligand. Inorg Chim Acta 96:1–7. https://doi.org/10.1016/S0020-1693(00)93729-0

    Article  CAS  Google Scholar 

  27. Antonova AB, Kovalenko SV, Korniyets ED et al (1985) Chemistry of vinylidene complexes. V. The ligand substitution reactions at the platinum atom in complexes Cp(CO)2MnPt(µ-C=CHPh)L2. Inorg Chim Acta 105:153–163. https://doi.org/10.1016/S0020-1693(00)90555-3

    Article  CAS  Google Scholar 

  28. Antonova AB, Kovalenko SV, Johansson AA et al (1991) Chemistry of vinylidene complexes X. Synthesis and characterization of the vinylidene bridged complexes Cp(CO)2MnPt(μ-C=CHPh)(P-P) with chelating diphosphine ligands P-P = dppm, dppe or dppp at the platinum atom. Inorg Chim Acta 182:49–54. https://doi.org/10.1016/S0020-1693(00)85185-3

    Article  CAS  Google Scholar 

  29. Johansson AA, Antonova AB, Pavlenko NI, Rubaylo AI (1997) Infrared study of transformation of a terminal carbonyl ligand into a bridging one in the MnPt and MnPd μ-vinylidene complexes. J Mol Struct 408–409:329–332. https://doi.org/10.1016/S0022-2860(96)09541-5

    Article  Google Scholar 

  30. Antonova AB, Verpekin VV, Chudin OS et al (2013) Chemistry of vinylidene complexes. XXI. Synthesis, spectroscopic and structural study of the RePt and MnPt μ–vinylidene complexes. Inorg Chim Acta 394:328–336. https://doi.org/10.1016/j.ica.2012.06.038

    Article  CAS  Google Scholar 

  31. Chudin OS, Verpekin VV, Kondrasenko AA et al (2020) Chemistry of vinylidene complexes. XXV. Synthesis and reactions of binuclear µ-vinylidene RePt complexes containing phosphite ligands. Spectroscopic, structural and electrochemical study. Inorg Chim Acta 505:119463. https://doi.org/10.1016/j.ica.2020.119463

    Article  CAS  Google Scholar 

  32. Cordero B, Gómez V, Platero-Prats AE et al (2008) Covalent radii revisited. Dalton Trans. https://doi.org/10.1039/b801115j

    Article  PubMed  Google Scholar 

  33. Vasiliev AD, Antonova AB, Chudin OS (2007) μ-Carbonyl-1:2κ 2 C -carbonyl-1κ C -(1 η5-cyclopentadienyl)(μ-phenylvinylidene)bis(triphenylphosphine-2κ P )manganeseplatinum( Mn—Pt). Acta Crystallogr Sect E Struct Reports Online 63:m2097–m2097. https://doi.org/10.1107/S1600536807032254

    Article  CAS  Google Scholar 

  34. Li M, Liska T, Swetz A et al (2020) (Isonitrile)platinum(II) complexes of an amido bis(N-heterocyclic carbene) pincer ligand. Organometallics 39:1667–1671. https://doi.org/10.1021/acs.organomet.0c00065

    Article  CAS  Google Scholar 

  35. Obanda A, Martinez K, Schmehl RH et al (2017) Expanding the scope of ligand substitution from [M(S2C2Ph2] (M = Ni2+, Pd2+, Pt2+) to afford new heteroleptic dithiolene complexes. Inorg Chem 56:10257–10267. https://doi.org/10.1021/acs.inorgchem.7b00971

    Article  PubMed  CAS  Google Scholar 

  36. Obanda A, Valerius K, Mague JT et al (2020) Group 10 metal dithiolene bis(isonitrile) complexes: synthesis, structures, properties, and reactivity. Organometallics 39:2854–2870. https://doi.org/10.1021/acs.organomet.0c00375

    Article  CAS  Google Scholar 

  37. Burmakina GV, Verpekin VV, Zimonin DV et al (2018) Effect of ligands coordinated at Platinum atom on redox properties of binuclear Manganese-Platinum phenylvinylidene complexes. J Sib Fed Univ Chem 11:543–551

    Article  Google Scholar 

  38. Novikova LN, Peterleitner MG, Sevumyan KA et al (2001) Oxidative dehydrodimerization of manganese phenylvinylidene complex (η5-C5H5)(CO)2Mn=C=C(H)Ph. X-ray structure of phenyl(trityl)vinylidene complex (η5-C5H5)(CO)2Mn=C=C(CPh3)Ph. J Organomet Chem 631:47–53. https://doi.org/10.1016/S0022-328X(01)01030-0

    Article  CAS  Google Scholar 

  39. Burmakina GV, Verpekin VV, Chudin OS et al (2013) Electrochemical study of new binuclear heterometallic vinylidene complexes with the Re-Pt Bond. J Sib Fed Univ Chem 1:51–59

    Google Scholar 

  40. Verpekin VV, Vasiliev AD, Kondrasenko AA et al (2018) Chemistry of vinylidene complexes. XXIV. A new μ-vinylidene complex containing RePt core, and platinum-bound carbonyl ligand. Spectroscopic, structural and electrochemical study. J Mol Struct 1163:308–315. https://doi.org/10.1016/j.molstruc.2018.03.020

    Article  CAS  Google Scholar 

  41. Sasaki T, Eguchi S, Katada T (1974) Synthesis of adamantane derivatives. XXV. Synthesis and reactions of 1- and 2-adamantyl isocyanides. J Org Chem 39:1239–1242. https://doi.org/10.1021/jo00923a017

    Article  CAS  Google Scholar 

  42. Connelly NG, Geiger WE (1996) Chemical redox agents for organometallic chemistry. Chem Rev 96:877–910

    Article  PubMed  CAS  Google Scholar 

  43. Krause L, Herbst-Irmer R, Sheldrick GM, Stalke D (2015) Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J Appl Crystallogr 48:3–10. https://doi.org/10.1107/S1600576714022985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sheldrick G. M. (2012) TWINABS–Bruker AXS scaling for twinned crystals

  45. Sheldrick GM (2015) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr Sect A Found Adv 71:3–8. https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  46. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem 71:3–8. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Physical-chemical characteristics were obtained in the Krasnoyarsk Regional Centre of Research Equipment, Siberian Branch of the Russian Academy of Sciences.

Funding

This work was conducted within the framework of the budget project 0287–2021-0012 for Institute of Chemistry and Chemical Technology SB RAS.

Author information

Authors and Affiliations

Authors

Contributions

V.V. analyzed and summarized row data, wrote and edited the main manuscript text. O.Ch. synthesized initial compounds, performed reactions and isolation of products, prepared samples for NMR spectroscopy, grown crystals for X-ray diffraction study. A.K. performed NMR experiments, NMR data curation. G.B. wrote the draft of electrochemical part of the manuscript, edited the main manuscript text, electrochemical data curation. A.V. performed X-ray crystallography experiment, X-ray data curation, prepared Fig. 1. D.Z. performed electrochemical experiments, prepared Fig. 2. A.R. project administration, funding acquisition. All authors reviewed the manuscript.

Corresponding author

Correspondence to Victor V. Verpekin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8257 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verpekin, V.V., Chudin, O.S., Kondrasenko, A.A. et al. Chemistry of vinylidene complexes—XXVII—new µ-vinylidene MnPt complexes with platinum-coordinated 1-adamantyl isocyanide ligand: spectroscopic, structural and electrochemical study. Transit Met Chem 47, 283–292 (2022). https://doi.org/10.1007/s11243-022-00511-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-022-00511-w

Navigation