Skip to main content
Log in

A linear tetranuclear Ni(II) acyl hydrazone Schiff base complex: preparation, crystal structure and catalytic application

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A novel linear tetranuclear Ni(II) complex Ni4L2 {[Ni4L2(H2O)3CH3OH]·CH3OH·2CH3CN·2H2O} was constructed by employing a well-tailored compartmental ligand H4L = (2E,N'E)-N'-(1-(3-((E)-2-hydroxy-3-methoxybenzylideneamino)-2-hydroxyphenyl)ethylidene)-2 -(hydroxyimino)propanehydrazideas with equal equivalent NiCl2·6H2O and NaOH via solvothermal reaction. The complex was well characterized by X-ray crystallography, elemental analysis, infrared emission spectra, UV–visible absorption spectra and thermogravimetry. The crystal structure shows that four nickel ions coordinate with two ligands to form a unique linear structure of Ni4L2. Besides, Ni4L2 act as a catalyst showed good catalytic activity for polymerization of methyl methacrylate (MMA) to obtain PMMA under mild condition.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Li L, Li L (2016) Recent advances in multinuclear metal nitrosyl complexes. Coord Chem Rev 306:678–700

    Article  PubMed  CAS  Google Scholar 

  2. Ube H, Endo K, Sato H, Shionoya M (2019) Synthesis of hetero-multinuclear metal complexes by site-selective redox switching and transmetalation on a homo-multinuclear complex. J Am Chem Soc 141:10384–10389

    Article  PubMed  CAS  Google Scholar 

  3. Nath BD, Takaishi K, Ema T (2020) Macrocyclic multinuclear metal complexes acting as catalysts for organic synthesis. Catal Sci Technol 10:12–34

    Article  CAS  Google Scholar 

  4. Zhang RL, Wang L, Xu C, Yang H, Chen WM, Gao GS, Liu WS (2018) Anion-induced 3d–4f luminescent coordination clusters: structural characteristics and chemical fixation of CO2 under mild conditions. Dalton Trans 47:7159–7165

    Article  PubMed  CAS  Google Scholar 

  5. Wang P, Saber MR, VanNatta PE, Yap GA, Popescu CV, Scarborough CC, Kieber-Emmons MT, Dunbar KR, Riordan CG (2021) Molecular and electronic structures and single-molecule magnet behavior of tris (thioether)-Iron complexes containing redox-active α-diimine ligands. Inorg Chem 60:6480–6491

    Article  PubMed  CAS  Google Scholar 

  6. Li G, Zhao XX, Han QX, Wang L, Liu WS (2020) Radii-dependent self-assembly of chiral lanthanide complexes: synthesis, chirality, and single-molecule magnet behavior. Dalton Trans 49:10120–10126

    Article  PubMed  CAS  Google Scholar 

  7. Buchwalter P, Rose J, Braunstein P (2015) Multimetallic catalysis based on heterometallic complexes and clusters. Chem Rev 115:28–126

    Article  PubMed  CAS  Google Scholar 

  8. Wang L, Xu C, Han QX, Tang XL, Zhou PP, Zhang RL, Gao GS, Xu BH, Qin WW, Liu WS (2018) Ambient chemical fixation of CO2 using a highly efficient heterometallic helicate catalyst system. Chem Comm 54:2212–2215

    Article  PubMed  CAS  Google Scholar 

  9. Snider JL, Streibel V, Hubert MA, Choksi TS, Valle E, Upham DC, Schumann J, Duyar MS, Gallo A, Abild-Pedersen F, Jaramillo TF (2019) Revealing the synergy between oxide and alloy phases on the performance of bimetallic In-Pd catalysts for CO2 hydrogenation to methanol. ACS Catal 9:3399–3412

    Article  CAS  Google Scholar 

  10. Deacy AC, Kilpatrick AFR, Regoutz A, Williams CK (2020) Understanding metal synergy in heterodinuclear catalysts for the copolymerization of CO2 and epoxides. Nat Chem 12:372–380

    Article  PubMed  CAS  Google Scholar 

  11. Cao LM, Huang HH, Wang JW, Zhong DC, Lu TB (2018) The synergistic catalysis effect within a dinuclear nickel complex for efficient and selective electrocatalytic reduction of CO2 to CO. Green Chem 20:798–803

    Article  CAS  Google Scholar 

  12. Gao GS, Wang L, Zhang RL, Xu C, Yang H, Liu WS (2019) Hexanuclear 3d–4f complexes as efficient catalysts for converting CO2 into cyclic carbonates. Dalton Trans 48:3941–3945

    Article  PubMed  CAS  Google Scholar 

  13. Kanega R, Onishi N, Tanaka S, Kishimoto H, Himedar Y (2021) Catalytic hydrogenation of CO2 to methanol using multinuclear iridium complexes in a gas-solid phase reaction. J Am Chem Soc 143:1570–1576

    Article  PubMed  CAS  Google Scholar 

  14. Asaba H, Iwasaki T, Hatazawa M, Deng JY, Nagae H, Mashima K, Nozaki K (2020) Alternating copolymerization of CO2 and cyclohexene oxide catalyzed by cobalt-lanthanide mixed multinuclear complexes. Inorg Chem 59:7928–7933

    Article  PubMed  CAS  Google Scholar 

  15. Haak RM, Belmonte MM, Escudero-Adán EC, Benet-Buchholz J, Kleij AW (2010) Olefin metathesis as a tool for multinuclear Co (III) salen catalyst construction: access to cooperative catalysts. Dalton Trans 39:593–602

    Article  CAS  Google Scholar 

  16. Yang H, Gao GS, Chen WM, Wang L, Liu WS (2020) Self-assembly of tetranuclear 3d–4f helicates as highly efficient catalysts for CO2 cycloaddition reactions under mild conditions. Dalton Trans 49:10270–10277

    Article  PubMed  CAS  Google Scholar 

  17. Su BY, Pan DD, Yan TY, Zhang A, Wang L, Ding LQ, Zhou R (2020) Nickel (II) Complexes with Mono (imino) pyrrole ligands: Preparation, structure, and MMA polymerization behavior. Russ J Coord Chem 46:355–364

    Article  CAS  Google Scholar 

  18. Jaiswal S, Dutta PK, Kumar S, Koh J, Pandey S (2019) Methyl methacrylate modified chitosan: synthesis, characterization and application in drug and gene delivery. Carbohydr Polym 211:109–117

    Article  PubMed  CAS  Google Scholar 

  19. Zhang Y, Chen DS, Guo ZF, Wei ZH, Zhang XC, Xing HZ (2020) Visible-light-induced controlled radical polymerization of methacrylates mediated by zirconium-porphryinic metal-organic frameworks. New J Chem 44:5235–5242

    Article  CAS  Google Scholar 

  20. Su BY, Yan TY, Li XT, Pan DD, Faida P, Ding LQ (2020) Influence of the substituents on imino-aryl ring of mono (imino) pyrrole-NiII complexes to their ethylene polymerization catalytic performance. Chin J Struct Chem 39:1093–1102

    Google Scholar 

  21. Sheldrick GM (2002) SADABS: a software for empirical absorption correction, Ver. 2.05. University of Göttingen, Göttingen

    Google Scholar 

  22. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341

    Article  CAS  Google Scholar 

  23. Sheldrick G (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect. C Struct. Chem. 71:3–8

    Article  Google Scholar 

  24. Dong W. K.; Li X. L.; Wang L.; Zhang Y.; Ding Y. J. A new application of Salamo-type bisoximes: As a relay-sensor for Zn2+/Cu2+ and its novel complexes for successive sensing of H+/OH-. Sensor. Actuat. B-Chem., 2016, 229, 370–378.

  25. Dong WK, Akogun SF, Zhang Y, Sun YX, Dong XY (2017) A reversible “turn-on” fluorescent sensor for selective detection of Zn2+. Sensor Actuat B-Chem 238:723–734

    Article  CAS  Google Scholar 

  26. Mangin R, Vahabi H, Sonnier R, Chivas-Joly C, Lopez-Cuesta JM, Cochez M (2020) Assessment of the protective effect of PMMA on water immersion ageing of flame retarded PLA/PMMA blends. Polym Degrad Stab 174:109104

    Article  CAS  Google Scholar 

  27. Mahboub MJD, Dubois JL, Cavani F, Rostamizadeh M, Patience GS (2018) Catalysis for the synthesis of methacrylic acid and methyl methacrylate. Chem Soc Rev 47:7703–7738

    Article  Google Scholar 

  28. Su BY, Liu YT, Yan TY, Wu JD, Han QQ, Wang L, Ran LT, Pan DD (2021) Nickel (II) complexes with mono (imino) pyrrole ligands: preparation, structure, DFT calculation and catalytic behavior. Transit Met Chem 46:601–611

    Article  CAS  Google Scholar 

  29. Su BY, Yan TY, Wu JD, Han QQ, Wang L, Ran LT, Pan DD (2021) Asymmetric mono (imine) pyrrole nickel pmma catalysts: synthesis, crystal structure, and DFT calculation. J Struc Chem 62:1094–1104

    Article  CAS  Google Scholar 

  30. Zohuri G.; Ramezanian N. Microstructural study on MMA/1-hexene copolymers made by mononuclear and dinuclear α‐diimine nickel (II) catalysts. Appl. Organomet. Chem., 2020, 35.

  31. Fujimura K, Ouchi M, Sawamoto M (2015) A the rmoresponsive polymer supporter for concerted catalysis of ferrocene with a ruthenium catalyst in living radical polymerization: high activity and efficient removal of metal residues. Polym Chem 6:7821–7826

    Article  CAS  Google Scholar 

  32. Zhou Y, Jiang S, Xu X (2021) Isospecific polymerization of methyl methacrylate by intramolecular rare-earth metal based Lewis pairs. Chinese J Chem 39:149–156

    Article  CAS  Google Scholar 

  33. Wang Z, Zhang XH, Liang HW, Xian M, Wang XW (2020) Binuclear aluminum Lewis acid and its behavior in the polymerization of methyl methacrylate and n-butyl acrylate. Polym Chem 11:5526–5533

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Natural Science Basic Research Program of Shaanxi (No. 2020JQ-763), Scientific Research Program of Shaanxi Provincial Department of Education (No. 21JK0835), Scientific Research Foundation of Shaanxi Provincial Key Laboratory (19JS007) and the Young Scientific Research and Innovation Team Program of Xi'an Shiyou University (2019QNKYCXTD16).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Huang or Biyun Su.

Ethics declarations

Conflict of interests

We filed a related patent based on this research, which has no competing financial interests with this paper. The link as follows: https://worldwide.espacenet.com/patent/search/family/076275811/publication/CN112961193A?q=CN112961193A.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6692 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wu, J., Su, X. et al. A linear tetranuclear Ni(II) acyl hydrazone Schiff base complex: preparation, crystal structure and catalytic application. Transit Met Chem 47, 275–281 (2022). https://doi.org/10.1007/s11243-022-00501-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-022-00501-y

Navigation