Skip to main content

Advertisement

Log in

Reduction of an asymmetric Pt(IV) prodrug fac-[Pt(dach)Cl3(OC(=O)CH3)] by biological thiol compounds: kinetic and mechanistic characterizations

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

An asymmetric Pt(IV) prodrug fac-[Pt (dach)Cl3(OC(=O)CH3)] (dach = 1,2-diaminocyclohexane) was synthesized, and the reduction of the Pt(IV) prodrug by three biological thiols glutathione (GSH), cysteine (Cys) and homocysteine (Hcy) was investigated by a stopped-flow spectrometer. All the reductions were followed by an overall second-order reaction with first-order in both [Pt(IV)] and [thiol]. The reduction of the Pt(IV) prodrug occurred through a chloride bridge (Pt-Cl-S) mediated two electron transfer process. Therefore, the coordinated chloride possesses a better bridging effect than the oxygen atom from the coordinated –CH3COO of the Pt(IV) prodrug. A reactivity trend of k′Cys > k′GSH > k′Hcy is found, illustrating that the reactivity is followed by the trend of Cys > GSH > Hcy in pH 7.4 buffer.

Graphical abstract

Transition state is formed between the axially coordinated chloride of the platinum(IV) complex and the sulfur atom from the thiol/thiolate group of Cys/Hcy/GSH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hall MD, Hambley TW (2002) Platinum(IV) antitumour compounds: their bioinorganic chemistry. Coord Chem Rev 232:49–67

    Article  CAS  Google Scholar 

  2. Hall MD, Mellor HR, Callaghan R, Hambley TW (2007) Basis for design and development of platinum(IV) anticancer complexes. J Med Chem 50:3403–3411

    Article  CAS  Google Scholar 

  3. Wexselblatt E, Gibson D (2012) What do we know about the reduction of Pt(IV) pro-drugs. J Inorg Biochem 117:220–229

    Article  CAS  Google Scholar 

  4. Wheate NJ, Walker S, Craig GE, Oun R (2010) The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans 39:8113–8127

    Article  CAS  Google Scholar 

  5. Yuan D, Wong Q, Ang WH (2012) Developmnet of platinum(IV) complexes as anticancer prodrugs: the story so far. Cosmos 8:121–134

    Article  Google Scholar 

  6. Farrell NP (2011) Platinum formulations as anticancer drugs clinical and pre-clinical studies. Curr Top Med Chem 11:2623–2631

    Article  CAS  Google Scholar 

  7. Dilruba S, Kalayda GV (2016) Platinum-based drugs: past, present and future. Cancer Chemoth Pharm 77:1103–1124

    Article  CAS  Google Scholar 

  8. Hu X, Li FY, Noor N, Ling DS (2017) Platinum drugs: from Pt(II) compounds, Pt(IV) prodrugs to Pt nanocrystals/nanoclusters. Sci Bull 62:589–596

    Article  CAS  Google Scholar 

  9. Wang M, Liu Z, Huang X, Chen Y, Wang Y, Kong J, Yu C, Li J, Wang X, Wang H (2021) Dual-target platinum(IV) complexes exhibit antiproliferative activity through DNA damage and induce ER-stress-mediated apoptosis in A549 cells. Bioorg Chem 110:104741

    Article  CAS  Google Scholar 

  10. Huang X, Liu Z, Wang M, Yin X, Wang Y, Dai L, Wang H (2020) Platinum(IV) complexes conjugated with chalcone analogs as dual targeting anticancer agents: In vitro and in vivo studies. Bioorg Chem 105:104430

    Article  CAS  Google Scholar 

  11. Wang Z, Deng Z, Zhu G (2019) Emerging platinum(IV) prodrugs to combat cisplatin resistance: from isolated cancer cells to tumor microenvironment. Dalton Trans 48:2536–2544

    Article  CAS  Google Scholar 

  12. Kenny RG, Marmion CJ (2019) Toward multi-targeted platinum and ruthenium drugs-a new paradigm in cancer drug treatment regimens. Chem Rev 119:1058–1137

    Article  CAS  Google Scholar 

  13. Gibson D (2019) Multi-action Pt(IV) anticancer agents; do we understand how they work. J Inorg Biochem 191:77–84

    Article  CAS  Google Scholar 

  14. Mjos KD, Orvig C (2014) Metallodrugs in medicinal inorganic chemistry. Chem Rev 114:4540–4563

    Article  CAS  Google Scholar 

  15. Deo KM, Ang DL, McGhie B, Rajamanickam A, Dhiman A, Khoury A, Holland J, Bjelosevic A, Pages B, Gordon C, Aldrich-Wright JR (2018) Platinum coordination compounds with potent anticancer activity. Coord Chem Rev 375:148–163

    Article  CAS  Google Scholar 

  16. Wang X, Guo Z (2013) Targeting and delivery of platinum-based anticancer drugs. Chem Soc Rev 42:202–224

    Article  CAS  Google Scholar 

  17. Wilson JJ, Lippard SJ (2014) Synthetic methods for the preparation of platinum anticancer complexes. Chem Rev 114:4470–4495

    Article  CAS  Google Scholar 

  18. Johnstone TC, Suntharalingam K, Lippard SJ (2016) The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem Rev 116:3436–3486

    Article  CAS  Google Scholar 

  19. Ravera M, Gabano E, McGlinchey MJ, Osella D (2019) A view on multi- action Pt(IV) antitumor prodrugs. Inorg Chim Aata 492:32–47

    Article  CAS  Google Scholar 

  20. Najjar A, Rajabi N, Karaman R (2017) Recent approaches to platinum(IV) prodrugs: a variety of strategies for enhanced delivery and efficacy. Curr Pharm Des 23:2366–2376

    Article  CAS  Google Scholar 

  21. Ravera M, Gabano E, Pelosi G, Fregonese F, Tinello S, Osella D (2014) A new entry to asymmetric platinum(IV) complexes via oxidative chlorination. Inorg Chem 53:9326–9335

    Article  CAS  Google Scholar 

  22. Huang X, Huang R, Gou S, Wang Z, Liao Z, Wang H (2016) Combretastatin A-4 analogue: a dual-targeting and tubulin inhibitor containing antitumor Pt(IV) moiety with a unique mode of action. Bioconjugate Chem 27:2132–2148

    Article  CAS  Google Scholar 

  23. Qin X, Fang L, Chen F, Gou S (2017) Conjugation of platinum(IV) complexes with chlorambucil to overcome cisplatin resistance via a “joint action” mode toward DNA. Eur J Med Chem 137:167–175

    Article  CAS  Google Scholar 

  24. Chen F, Xu G, Qin X, Jin X, Gou S (2017) Hybrid of DNA-targeting chlorambucil with Pt(IV) species to reverse drug resistance. J Pharmacol Exp Ther 363:221–239

    Article  CAS  Google Scholar 

  25. Chen H, Chen F, Hu W, Gou S (2018) Effective platinum(IV) prodrugs conjugated with lonidamine as a functional group working on the mitochondria. J Inorg Biochem 180:119–128

    Article  CAS  Google Scholar 

  26. Gabano E, Ravera M, Tinello S, Osella D (2015) Synthesis of PtIV-biomolecule conjugates through click chemistry. Eur J Inorg Chem 2015:5335–5341

    Article  CAS  Google Scholar 

  27. Li W, Jiang M, Cao Y, Yan L, Qi R, Li Y, Jing X (2016) Turning ineffective transplatin into a highly potent anticancer drug via a prodrug strategy for drug delivery and inhibiting cisplatin drug resistance. Bioconjugate Chem 27:1802–1806

    Article  CAS  Google Scholar 

  28. Sun T, Cui W, Yan M, Qin G, Guo W, Gu H, Liu S, Wu Q (2016) Target delivery of a novel antitumor organoplatinum(IV)-substituted polyoxometalate complex for safer and more effective colorectal cancer therapy in vivo. Adv Mater 28:7397–7404

    Article  CAS  Google Scholar 

  29. Kleinman WA, Richie JP Jr (2000) Status of glutathione and other thiols and disulfides in human plasma. Biochem Pharmacol 60:19–29

    Article  CAS  Google Scholar 

  30. Dong J, Ren Y, Huo S, Shen S, Xu J, Tian H, Shi T (2016) Reduction of ormaplatin and cisdiamminetetrachloroplatinum(IV) by ascorbic acid and dominant thiols in human plasma: kinetic and mechanistic analyses. Dalton Trans 45:11326–11337

    Article  CAS  Google Scholar 

  31. Wan W, Sun J, Liu W, Huo S, Shen S (2019) Reductions of the cisplatin-based platinum(IV) prodrug cis, cis, trans-[Pt(NH3)2Cl2Br 2] by predominant biological thiols: kinetic and mechanistic studies. Transition Met Chem 44:535–544

    Article  CAS  Google Scholar 

  32. Chen L, Lee PF, Ranford JD, Vittal JJ, Wong SY (1999) Reduction of the anti-cancer drug analogue cis,trans,cis-[PtCl2(OCOCH3)2(NH3)2] by L-cysteine and L-methionine and its crystal structure. J Chem Soc Dalton Trans 1209–1212.

  33. Huo S, Dong J, Song C, Xu J, Shen S, Shi T (2014) Characterizations of reaction products, kinetics and mechanism of oxidation of the drug captopril by platinum(IV) complexes. RSC Adv 4:7402–7409

    Article  CAS  Google Scholar 

  34. Huo S, Shi H, Liu D, Shen S, Zhang J, Song C, Shi T (2013) Kinetics and mechanism of reactions of the drug tiopronin with platinum(IV) complexes. J Inorg Biochem 125:9–15

    Article  CAS  Google Scholar 

  35. Huo S, Shen S, Liu D, Shi T (2012) Oxidation of 3,6-dioxa-1,8-octanedithiol by platinum(IV) anticancer prodrug and model complex: kinetic and mechanistic studies. J Phys Chem B 116:6522–6528

    Article  CAS  Google Scholar 

  36. Lemma K, Berglund J, Farrell N, Elding LI (2000) Kinetics and mechanism for reduction of anticancer-active tetrachloroam(m)ine platinum(IV) compounds by glutathione. J Bio Inorg Chem 5:300–306

    Article  CAS  Google Scholar 

  37. Dong J, Tian H, Song C, Shi T, Elding LI (2018) Reduction of ormaplatin by an extended series of thiols unravels a remarkable correlation. Dalton Trans 47:5548–5552

    Article  CAS  Google Scholar 

  38. Sinisi M, Intini FP, Natile G (2012) Dependence of the reduction products of platinum(IV) prodrugs upon the configuration of the substrate, bulk of the carrier ligands, and nature of the reducing agent. Inorg Chem 51:9694–9704

    Article  CAS  Google Scholar 

  39. Shi T, Berglund J, Elding LI (1996) Kinetics and mechanism for reduction of trans-dichlorotetracyanoplatinate(IV) by thioglycolic acid, L-cysteine, DL-penicillamine, and glutathione in aqueous solution. Inorg Chem 35:3498–3503

    Article  CAS  Google Scholar 

  40. Lu T, Dong J, Nan C, Huo S, Shen S, Sun S, Shi T (2015) Characterization of the mechanism of reduction of trans-diamminetetrachloroplatinum(IV) by cysteine and homocysteine. Transition Met Chem 40:869–875

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this work through grants from the National Natural Science Foundation of China (21406047) and the Natural Science Foundation of Hebei Province (B2016201014) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changying Song or Shuying Huo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 377 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ma, D., Sun, J. et al. Reduction of an asymmetric Pt(IV) prodrug fac-[Pt(dach)Cl3(OC(=O)CH3)] by biological thiol compounds: kinetic and mechanistic characterizations. Transit Met Chem 46, 623–631 (2021). https://doi.org/10.1007/s11243-021-00480-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-021-00480-6

Navigation