Skip to main content
Log in

Two nickel(II) carboxyphosphonates with different supramolecular structures: synthesis, crystal structures and magnetic properties

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Two Ni(II) carboxyphosphonates, namely [Ni(H4L)2] (1) and [Ni(H3L)(H2O)]·2H2O (2) (H5L=HOOCC6H4CH2N(CH2PO3H2)2), have been hydrothermally synthesized. Structural analyses reveal that 1 shows a two-dimensional (2D) inorganic layer structure, and the layers are further packed into a three-dimensional (3D) supramolecular structure through the interlayer hydrogen-bonding interactions. In 2, two adjacent {NiO5N} polyhedra are connected to form a {Ni2O8N2} dimer, and these dimers are further linked by {CPO3} tetrahedra to form a one-dimensional (1D) chain. Consecutive chains are further connected by the intermolecular hydrogen-bonding interactions, resulting in a 2D supramolecular layer structure. Magnetic analyses exhibited that 1 shows major antiferromagnetic behavior, whereas 2 displays ferromagnetic interactions at low temperatures. Meanwhile, the magnetic properties of 1 and 2 have also been quantified using the Curie–Weiss law and the PHI program package, respectively.

Graphic abstract

Two nickel(II) carboxyphosphonates with different structures showed different magnetic behaviors. Meanwhile, the magnetic properties of 1 and 2 have also been quantified using the Curie–Weiss law and the PHI program package.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ai J, Tian HR, Xue M, Wang ZC, Sun ZM (2020) Dalton Trans 49:3700–3705

    Article  Google Scholar 

  2. Vilela SMF, Navarro JAR, Barbosa P, Mendes RF, Pérez-Sánchez G, Nowell H, Ananias D, Figueiredo F, Gomes JRB, Tomé JPC, Paz FAA (2021) J Am Chem Soc 143:1365–1376

    Article  CAS  Google Scholar 

  3. Cai ZS, Shi Y, Bao SS, Shen Y, Xia XH, Zheng LM (2018) ACS Catal 8:3895–3902

    Article  CAS  Google Scholar 

  4. Indra A, Menezes PW, Zaharieva I, Dau H, Driess M (2020) J Mater Chem A 8:2637–2643

    Article  CAS  Google Scholar 

  5. Tang SF, Hou XM (2019) Inorg Chem 58:1382–1390

    Article  CAS  Google Scholar 

  6. Wei WJ, Mu Y, Wei L, Hu JX, Wang GM (2021) Inorg Chem 60:108–114

    Article  CAS  Google Scholar 

  7. Bao SS, Shimizub GKH, Zheng LM (2019) Coord Chem Rev 378:577–594

    Article  CAS  Google Scholar 

  8. Zhang Q, Wei WJ, Li Q, Pan J, Han SD, Hu JX, Wang GM (2021) Sci China Chem 64:1170–1176

    Article  CAS  Google Scholar 

  9. Ma YJ, Hu JX, Han SD, Pan J, Li JH, Wang GM (2020) J Am Chem Soc 142:2682–2689

    Article  CAS  Google Scholar 

  10. Bao SS, Zheng LM (2016) Coord Chem Rev 319:63–85

    Article  CAS  Google Scholar 

  11. Hu JX, Jiang XF, Ma YJ, Liu XR, Ge BD, Wang AN, Wei Q, Wang GM (2021) Sci China Chem 64:432–438

    Article  CAS  Google Scholar 

  12. Gagnon KJ, Perry HP, Clearfield A (2012) Chem Rev 112:1034–1054

    Article  CAS  Google Scholar 

  13. Xu HL, Feng L, Wang QY, Huang WT, Zhou H (2018) Polyhedron 157:49–53

    Article  Google Scholar 

  14. Vaz MGF, Andruh M (2021) Coord Chem Rev 427:213611

    Article  CAS  Google Scholar 

  15. Clemente-Juan JM, Coronado E, Gaita-Ariño A (2012) Chem Soc Rev 41:7464–7478

    Article  CAS  Google Scholar 

  16. Espallargas GM, Coronado E (2018) Chem Soc Rev 47:533–557

    Article  Google Scholar 

  17. Cui SX, Zhu BL, Zhang XY, Xia SL, He PZ, Yin QZ, Zuo MH, Xu B (2021) Transit Metal Chem 46:345–351

    Article  CAS  Google Scholar 

  18. Chowdhury H, Rizzoli C, Adhikary C (2021) Transit Metal Chem 46:139–147

    Article  CAS  Google Scholar 

  19. Wang TT, Ren M, Bao SS, Cai ZS, Liu B, Zheng ZH, Xu ZL, Zheng LM (2015) Dalton Trans 44:4271–4279

    Article  CAS  Google Scholar 

  20. Yao HC, Li YZ, Gao S, Song Y, Zheng LM, Xin XQ (2004) J Solid State Chem 177:4557–4563

    Article  CAS  Google Scholar 

  21. Youngme S, Phuengphai P, Pakawatchai C, Albada GAV, Reedijk J (2005) Inorg Chim Acta 358:2125–2128

    Article  CAS  Google Scholar 

  22. Cai ZS, Ren M, Bao SS, Hoshino N, Akutagawa T, Zheng LM (2014) Inorg Chem 53:12546–12552

    Article  CAS  Google Scholar 

  23. Rojek T, Goldeman W, Slepokura K, Duczmal M, Wojciechowska A, Matczak-Jon E (2019) RSC Adv 9:31497–31510

    Article  CAS  Google Scholar 

  24. Zhu H, Huang J, Bao SS, Ren M, Zheng LM (2013) CrystEngComm 15:10316–10322

    Article  CAS  Google Scholar 

  25. Yang XJ, Bao SS, Ren M, Hoshino N, Akutagawa T, Zheng LM (2014) Chem Commun 50:3979–3981

    Article  CAS  Google Scholar 

  26. Yang Y, Chen M, Tang XY, Yuan RX, Ma YS (2018) Inorg Chem Commun 89:60–63

    Article  CAS  Google Scholar 

  27. Pütz AM, Carrella LM, Rentschler E (2013) Dalton Trans 42:16194–16199

    Article  Google Scholar 

  28. Cao DK, Liu MJ, Huang J, Bao SS, Zheng LM (2011) Inorg Chem 50:2278–2287

    Article  CAS  Google Scholar 

  29. Song JL, Mao JG (2005) J Mol Struct 740:181–186

    Article  CAS  Google Scholar 

  30. Zhou W, Zhang J, Sun ZG, Zhu YY, Jiao CQ, Shi SP, Dai LL, Sun T, Li WZ, Ma MX, Luo H (2014) Inorg Chem Commun 47:37–41

    Article  CAS  Google Scholar 

  31. Bauer S, Stock N (2007) Angew Chem Int Ed 46:6857–6860

    Article  CAS  Google Scholar 

  32. Tang SF, Song JL, Mao JG (2006) Eur J Inorg Chem 10:2011–2019

    Article  Google Scholar 

  33. Bauer S, Bein T, Stock N (2005) Inorg Chem 44:5882–5889

    Article  CAS  Google Scholar 

  34. Sheldrick GM (2015) Acta Cryst C 71:3–8

    Article  Google Scholar 

  35. Chilton NF, Anderson RP, Turner LD, Soncini A, Murray KS (2013) J Comput Chem 34:1164–1175

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Meng Yin-Shan from Dalian university of technology for providing the help of magnetic measurement. This work was also supported by the Scientific Research Fund of Liaoning Provincial Education Department (Grant No. LQ2020023) and the Doctoral Scientific Research Project of Liaoning Normal University (Grant No. BS2020L001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Gang Sun or Cheng Qi Jiao.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2213 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y.Y., Zhang, X., Zhou, Y.N. et al. Two nickel(II) carboxyphosphonates with different supramolecular structures: synthesis, crystal structures and magnetic properties. Transit Met Chem 46, 593–600 (2021). https://doi.org/10.1007/s11243-021-00476-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-021-00476-2

Navigation