Skip to main content
Log in

A polydentate ligand based on 2,2’-dipyridylamine unit linked benzo-15-crown-5; alkali and transition metal complexes; photoresponsive ligand; antimicrobial evaluation against pathogenic microorganisms

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

New double-armed benzo-15-crown-5 compound (L) was successfully synthesized from 4’,5’-bis(bromethyl)benzo-15-crown-5 with 2,2’-dipyridylamine. The synthesized host molecule (L), the dipyridylamine unit was able to coordinate Ni2+, Cu2+ and Ag+ metal cations, whereas the crown ether moiety bound with the alkali metal cations (Na+ and K+). The structures of the ligand (L), alkali metal complexes (NaL and KL2) and transition metal complexes ([NiLOAc], [CuLOAc] and [AgLNO3]) were characterized by spectroscopic methods. NMR and mass data provided exact evidence of complex formation through both coordination centers of the new ligand (L). Both parts (dipyridyl and crown ether) were linked to form a potential fluorescent-sensing compound (L) for metal cations. Therefore, to investigate the metal selectivity, different metal cations (Na+, Mg2+, K+, Ba2+, Cr3+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+ and Ag+) and the new sensing compound (L) fluorescence spectra were recorded. Coordinations with Zn2+, Fe3+ and Cu2+ induced obvious changes on their increasing concentrations in fluorescence spectra. Crown ethers, as representatives of supramolecular compounds, are also promising antibacterial active compounds because of their ionophoric features. Synthesized ligand (L) and complexes (NaL, KL2, [NiLOAc], [CuLOAc] and [AgLNO3]) also proved to be adjuvants that helped to overcome antimicrobial resistance in a range of bacteria and yeast. The antimicrobial activity of compounds was screened in vitro against some pathogenic Gram-positive bacteria, some Gram-negative bacteria and yeast.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pedersen CJ (1967) J Am Chem Soc 89:7017–7036

    Article  CAS  Google Scholar 

  2. Gokel GW, Leevy WM, Weber ME (2004) Chem Rev 104:2723–2750

    Article  CAS  Google Scholar 

  3. Li J, Yim D, Jang WD, Yoon J (2017) Chem Soc Rev 46:2437–2458

    Article  CAS  Google Scholar 

  4. Roelens S, Vacca A, Venturi C (2009) Chem Eur J 15:2635–2644

    Article  CAS  Google Scholar 

  5. Antonioli B, Bray DJ, Clegg JK, Gloe K, Gloe K, Kataeva O, Lindoy LF, McMutrie JC, Steel PJ, Sumby CJ, Wenzel M (2006) Dalton Trans 40:4783–4794

    Article  Google Scholar 

  6. Wu F, Tong H, Wang K, Wang Z, Li Z, Zhu X, Wong WY, Wong WK (2016) J Photochem Photobiol A 318:97–103

    Article  CAS  Google Scholar 

  7. Youngme S, Chaichit N, Pakawatchai C, Booncoon S (2002) Polyhedron 21:1279–1288

    Article  CAS  Google Scholar 

  8. Youngme S, Chaichit N, Koonsaeng N (2002) Inorg Chim Acta 335:36–42

    Article  CAS  Google Scholar 

  9. Rauterkus MJ, Fakih S, Mock C, Puscasu I, Krebs B (2003) Inorg Chim Acta 350:355–365

    Article  CAS  Google Scholar 

  10. Kralj M (2008) Tušek-Božić, Frkanec L. ChemMedChem 3:1478–1492

    Article  CAS  Google Scholar 

  11. Calverly MJ, Dale J (1982) Acta Chem Scand 36B:241–247

    Article  Google Scholar 

  12. Winkler B, Mau AWH, Dai L (2000) Phys Chem Chem Phys 2:291–295

    Article  CAS  Google Scholar 

  13. Nithya C, Gnanalakshmi B, Pandian SK (2011) Mar Environ Res 71:283–294

    Article  CAS  Google Scholar 

  14. Çiçek İ, Tunç T, Ogutcu H, Abdurrahmanoglu S, Günel A, Demirel N (2020) Chemistry Select 5:4650–4654

    Google Scholar 

  15. Koçoğlu S, Ogutcu H, Hayvalı Z (2019) Res Chem Intermed 45:2403–2427

    Article  Google Scholar 

  16. Karakılıç E, Baran Ş, Öğütçü H, Akdemir A, Baran A (2020) rac- and meso-Cyclohexanoids: Their α-, β-glycosidases, antibacterial, antifungal activities and molecular docking studies. Arch Pharm. https://doi.org/10.1002/ardp.201900267

    Article  Google Scholar 

  17. Liu Y, Han JR, Zhang HY (2004) Supramol Chem 16:247–254

    Article  CAS  Google Scholar 

  18. Hayvali Z, Gündüz N, Kilic Z, Weber E (2000) Z Naturforsch 55b:975–981

  19. Burlov AS, Tsukanov AV, Borodkin GS, Revinskii YV, Dubonosov AD, Bren VA, Garnovskii AD, Tsivadze AY, Minkin VI (2006) Russ J Gen Chem 76:992–996

    Article  CAS  Google Scholar 

  20. Hayvalı Z, Köksal P (2013) J Incl Phenom Macrocycl Chem 76:369–378

    Article  Google Scholar 

  21. Biernat JF, Cygan A, Luboch E, Simonov YA, Malinovski TI (1993) Bel’skii VK, Bolotina NF. J Inclus Phenom Mol 15:369–383

    Article  CAS  Google Scholar 

  22. Şahin Gül D, Ogutcu H, Hayvalı Z (2020) J Mol Struct 1204:127569

  23. Gao Y, Zhong RL, Xu HL, Sun SL, Su ZM (2015) RSC Adv 5:30107–30119

    Article  Google Scholar 

  24. Keller BO, Sui J, Young AB, Whittal RM (2008) Anal Chim Acta 627:71–81

    Article  CAS  Google Scholar 

  25. Tong H, Bell D, Tabei K, Siegel MM (1999) J Am Soc Mass Spectrom 10:1174–1187

    Article  CAS  Google Scholar 

  26. Ghildiyal N (2017) nee Pant GJ, Rawat MSM, Singh K. Spectrochim Acta A 171:507–514

    Article  CAS  Google Scholar 

  27. Alcock NW, Tracy VM, Waddington TC (1976) J Chem Soc Dalton Trans 21:2243–2246

    Article  Google Scholar 

  28. Mathey Y, Greig DR, Shriver DF (1982) Inorg Chem 21:3409–3413

    Article  CAS  Google Scholar 

  29. Wang AQ, Golden TD (2013) Int J Electrochem 2013:1–10

    Google Scholar 

  30. Zhongy DC, Chen ZF, Liu YC, Luo XJ, Barta C, Liang H (2010) J Coord Chem 63:3146–3154

    Article  Google Scholar 

  31. Sánchez-Méndez A, Benito JM, de Jesús E, de la Mata FJ, Flores JC, Gómez R, Gómez-Sal P (2006) Dalton Trans 45:5379–5389

    Article  Google Scholar 

  32. Ramadan S, Hambley TW, Kennedy BJ, Lay PA (2004) Inorg Chem 43:2943–2946

    Article  CAS  Google Scholar 

  33. Koval IA, van der Schilden K, Schuitema AM, Gamez P, Belle C, Pierre JL, Luken M, Krebs B, Roubeau O (2005) Reedijk. J Inorg Chem 44:4372–4382

    Article  CAS  Google Scholar 

  34. Şahin D, Yılmaz H, Hayvalı Z (2016) Res Chem Intermed 42:6337–6350

    Article  Google Scholar 

  35. Sarı N, Şahin SÇ, Öğütcü H, Dede Y, Yalçın S, Altundas A, Doğanay K (2013) Spectrochim Acta A 106:60–67

    Article  Google Scholar 

  36. Ramaswamy V, Cresence VM, Rejitha JS, Lekshmi MU, Dharsana KS, Prasad SP, Vijila HM (2007) Microb Infect 40:4–13

    CAS  Google Scholar 

  37. Ceker S, Ogutcu H, Meral S, Agar AA, Agar G (2019) Pak J Pharm Sci 32:2679–2686

    CAS  PubMed  Google Scholar 

  38. Altundas A, Sarı N, Colak N, Ögütcü H (2010) Med Chem Res 19:576–588

    Article  CAS  Google Scholar 

  39. Nartop D, Hasanoğlu Özkan E, Gündem M, Çeker S, Ağar G, Öğütcü H, Sarı N (2019) J Mol Struct 1195:877–882

    Article  CAS  Google Scholar 

  40. Nartop D, Demirel B, Güleç M, Hasanoğlu Özkan E, Kurnaz Yetim N, Sarı N, Çeker S, Öğütcü H, Ağar G (2020) Novel polymeric microspheres: Synthesis, enzyme immobilization, antimutagenic activity and antimicrobial evaluation against pathogenic microorganisms. J Biochem Mol Toxic. https://doi.org/10.1002/jbt.22432

    Article  Google Scholar 

  41. Nartop D, Sarı N, Öğütcü H (2014) Chin J Inorg Chem 30:921–929

    Google Scholar 

  42. Çınarlı M, Yüksektepe Ataol Ç, Bati H, Güntepe F, Ögütçü H, Büyükgüngör O (2019) Inorg Chim Acta 484:87–94

    Article  Google Scholar 

  43. Mishra L, Singh VK (1993) Indian J Chem 32A:446–449

    CAS  Google Scholar 

  44. Reichling J, Koch C, Stahl-Biskup E, Sojka C, Schnitzler P (2005) Rev Bras Ciên Vet 18:62–66

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial assistance of the Scientific and Technical Research Council of Turkey (TUBITAK), grant No: TBAG 210T122 and Ankara University grant No: 17B0430004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serhat Koçoğlu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 989 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koçoğlu, S., Hayvalı, Z. & Ogutcu, H. A polydentate ligand based on 2,2’-dipyridylamine unit linked benzo-15-crown-5; alkali and transition metal complexes; photoresponsive ligand; antimicrobial evaluation against pathogenic microorganisms. Transit Met Chem 46, 509–522 (2021). https://doi.org/10.1007/s11243-021-00469-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-021-00469-1

Navigation