Skip to main content
Log in

Dynamic in situ solvothermal reactions between ZnX2 (X = Cl, ClO4) and a heterocyclic disulfide

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Solvothermal reactions of 2-ppds (2-ppds = di[4-(pyridin-2-yl)pyrimidinyl]disulfide) with ZnX2 (X = Cl, ClO4) in mixed CH3OH–CH2Cl2 solvent have been investigated. To better understand these reactions, solution analysis was conducted in parallel with single-crystal X-ray diffraction analysis of the in situ generated coordination complexes. At 120 °C, solvothermal reaction of 2-ppds with ZnCl2 resulted in a discrete mononuclear coordination complex formulated as [ZnCl2(L1)] (1), in which the zwitterion L1 (1-methyl-4-(pyridin-2-yl)pyrimidin-1-ium-2-olate) was formed in situ from 2-ppds, and solution analyses based on TLC and ESI–MS further showed that the reaction solution also contains in situ transformed products of L2 (bis(4-(pyridin-2-yl)pyrimidin-2-yl)sulfane) and L3 (2-methoxy-4-(pyridin-2-yl)pyrimidine). At 90 °C, solvothermal reaction between 2-ppds and Zn(ClO4)2 led to a discrete mononuclear coordination complex formulated as [Zn(SH)(L2)]ClO4 (2) that features a terminally bound –SH group, while the reaction solution was also found to contain a library of in situ reaction products of 2-ppds including L1, L2, L3 and L4 ((4-(pyridin-2-yl)pyrimidin-2-yl) 4-(pyridin-2-yl)pyrimidine-2-sulfonothioate). Thus, the heterocyclic disulfide 2-ppds is transformed in situ into various organic products in a series of reactions involving C–S/S–S bond cleavage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2

Similar content being viewed by others

References

  1. Aragoni MC, Arca M, Crespo M, Devillanova FA, Hursthouse MB, Huth SL, Isaia F, Lippolis V, Verani G (2007) CrystEngCommun 9:873

    Article  CAS  Google Scholar 

  2. Carballo R, Covelo B, Fernández-Hermida N, Lago AB, Vázquez-López EM (2009) CrystEngCommun 11:817

    Article  CAS  Google Scholar 

  3. Delgado S, Molina-Ontaoria A, Medina ME, Pastor CJ, Jiménez-Aparicio R, Priego JL (2006) Inorg Chem Commun 9:1289

    Article  CAS  Google Scholar 

  4. Delgado S, Barrilero A, Molina-Ontoria A, Medina ME, Pastor CJ, Jiménez-Aparicio R, Priego JL (2006) Eur J Inorg Chem 14:2746

    Article  Google Scholar 

  5. Yoo HS, Yoon JH, Kim JI, Koh EK, Hong CS (2008) Eur J Inorg Chem 20:3123

    Article  Google Scholar 

  6. la Pinta ND, Caballero AB, Madariaga G, Ezpeleta JM, Rodriguez-Dieguez A, Salas JM, Cortés R (2014) CrystEngComm 16:8322

    Article  Google Scholar 

  7. Lumb I, Hundal MS, Hundal G (2014) Inorg Chem 53:7770

    Article  CAS  Google Scholar 

  8. Han L, Bu X, Zhang Q, Feng P (2006) Inorg Chem 45:5736

    Article  CAS  Google Scholar 

  9. Wang J, Zhang YH, Li HX, Lin ZJ, Tong ML (2007) Cryst Growth Des 7:2352

    Article  CAS  Google Scholar 

  10. Chen Y, Wang ZQ, Ren ZG, Li HX, Li DX, Liu D, Zhang Y, Lang JP (2009) Cryst Growth Des 9:4963

    Article  CAS  Google Scholar 

  11. Wang J, Zheng SL, Hu S, Zhang YH, Tong ML (2007) Inorg Chem 46:795

    Article  CAS  Google Scholar 

  12. Ma LF, Wang YY, Wang LY, Lu DH, Batten SR, Wang JG (2009) Cryst Growth Des 9:2036

    Article  CAS  Google Scholar 

  13. Delgado S, Sanz Miguel PJ, Priego JL, Jiménez-Aparicio R, Zamora F (2008) Inorg Chem 47:9128

    Article  CAS  Google Scholar 

  14. Zhang YN, Wang YY, Hou L, Liu P, Liu JQ, Shi QZ (2010) Cryst Eng Comm 12:3840

    Article  CAS  Google Scholar 

  15. Zhu QL, Sheng TL, Tan CH, Hu SM, Fu RB, Wu XT (2011) Inorg Chem 50:7618

    Article  CAS  Google Scholar 

  16. Gallego AL, Castillo O, Zamora F, Delgado S (2013) RSC Advances 3:18406

    Article  CAS  Google Scholar 

  17. Gallego A, Castillo O, Gómez-García CJ, Zamora F, Delgado S (2012) Inorg Chem 51:718

    Article  CAS  Google Scholar 

  18. Delgado S, Gallego A, Castillo O, Zamora F (2011) Dalton Trans 40:847

    Article  CAS  Google Scholar 

  19. Zhu HB, Gou SH (2011) Coord Chem Rev 255:318

    Article  CAS  Google Scholar 

  20. Zhu HB, Li L, Xu G, Gou SH (2010) Eur J Inorg Chem 49:1143

    Article  Google Scholar 

  21. Zhu HB, Li L, Wang H, Lu X, Gou SH (2010) Inorg Chem Comm 13:30

    Article  CAS  Google Scholar 

  22. Zhu HB, Lu X, Yang WN, Gou SH (2012) Polyhedron 31:801

    Article  CAS  Google Scholar 

  23. Zhu HB, Wu YF, Zhao Y, Hu J (2014) Dalton Trans 43:17156

    Article  CAS  Google Scholar 

  24. Zhu HB, Yao G, Li WS (2016) Trans Met Chem 41:57

    Article  CAS  Google Scholar 

  25. SAINT, version 6.02a, Bruker AXS Inc., Madison, WI, 2002

  26. Sheldrick GM (1997) SADABS, Program for Bruker Area Detector Absorption Correction. University of Göttingen, Göttingen, p 1997

    Google Scholar 

  27. Sheldrick GM (1997) SHELXL-97, Program for Crystal Structure Refinement. University of Göttingen, Göttingen, p 1997

    Google Scholar 

  28. Modec B, Brenčič JV, Dolenc D, Zubieta J (2002) J Chem Soc Dalton Trans 4582

  29. Li GB, Liu JM, Yu ZQ, Wang W, Su CY (2009) Inorg Chem 48:8659

    Article  CAS  Google Scholar 

  30. Rombach M, Vahrenkamp H (2001) Inorg Chem 40:6144

    Article  CAS  Google Scholar 

  31. Ruf M, Vahrenkamp H (1996) Inorg Chem 35:6571

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support provided by the National Natural Science Foundation of China (Nos. 20801011 and 21171036 and the Fundamental Research Funds for the Central University (No. 3207047406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Bin Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2376 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, HB., Deng, W. & Xu, LL. Dynamic in situ solvothermal reactions between ZnX2 (X = Cl, ClO4) and a heterocyclic disulfide. Transit Met Chem 42, 655–660 (2017). https://doi.org/10.1007/s11243-017-0171-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-017-0171-7

Navigation