Skip to main content
Log in

Dinuclear copper(II) complexes with ethylenediamine derivative and bridging oxalato ligands: solvatochromism and density functional theory studies

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Two oxalato-bridged copper(II) complexes of formula, [Cu2(L1)2(µ-ox)](NO3)2·H2O, 1 and [Cu2(L2)2(µ-ox)](NO3)2·H2O, 2 (ox = oxalato dianion, L1 = N,N-dimethyl,N′-benzylethane-1,2-diamine, L2 = N,N-diethyl,N′-benzylethane-1,2-diamine), have been synthesized and characterized by elemental analyses, spectroscopic (IR, UV–Vis) data and molar conductance measurements. The crystal structure of complex 1 was determined by X-ray diffraction analysis, revealing two centrosymmetric dinuclear units. The first consists of a [Cu2(L1)2(µ-ox)(NO3)2] molecule, in which each Cu(II) center is in a square-pyramidal environment, providing two nitrogen atoms from the diamine-chelating ligands plus two oxygen atoms from the oxalate in the basal plane and an oxygen of the nitrate group in the axial position. The second unit [Cu2(L1)2(µ-ox)(H2O)2](NO3)2 has a similar structure, but the apical sites are occupied by water ligands and the nitrate anions are free from coordination. Both complexes are solvatochromic. Their solvatochromism was investigated with different solvent parameter models using SPSS/PC and DFT methodology. The solvatochromic behaviors of the complexes were also explored by TD-DFT in ethanol and acetonitrile solvents. The calculated visible absorption spectra were in accord with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fukuda Y (2007) Inorganic Chromotropism Basic Concepts and Applications of Colored Materials. Kodansha, Tokyo and Springer

    Book  Google Scholar 

  2. Sone K, Fukuda Y (1983) Ions and Molecules in Solution. Elsevier, Amsterdam

    Google Scholar 

  3. Golchoubian H, Rezaee E, Bruno G, Rudbari HA (2011) Inorg Chim Acta 366:290–297

    Article  CAS  Google Scholar 

  4. Golchoubian H, Rezaee E, Bruno G, Rudbari HA (2013) J Coord Chem 66:2250–2263

    Article  CAS  Google Scholar 

  5. Asadi H, Golchoubian H, Welter R (2005) J Mol Struct 779:30–37

    Article  CAS  Google Scholar 

  6. Golchoubian H (2008) Anal Sci 24:X169–X170

    CAS  Google Scholar 

  7. COSMO (2005) Bruker AXS Inc. Madison, Wisconsin

    Google Scholar 

  8. SAINT (2005) version 7.06A, Bruker AXS Inc, Madison, Wisconsin

  9. SADABS (2005) version 2.10, Bruker AXS Inc, Madison, Wisconsin

  10. Burla MC, Caliandro R, Camalli M, Carrozzini B, Cascarano GL, De Caro L, Giacovazzo C, Polidori G, Spagna R (2005) J Appl Crystallogr 38:381–388

    Article  CAS  Google Scholar 

  11. Sheldrick GM (2015) Acta Cryst (2015) C71, 3–8

  12. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Shida MI, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.1. Gaussian Inc, Wallingford

    Google Scholar 

  13. Dennington R, Keith T, Millam J (2009) GaussView, Version 5. Semichem Inc., Shawnee Mission KS

    Google Scholar 

  14. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  15. Yanai T, Tew D, Handy N (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  16. Machura B, Małecki JG, witlicka AS, Nawrot I, Kruszynski R (2011) Polyhedron 30:864–872

    Article  CAS  Google Scholar 

  17. Stratmann RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109:8218–8224

    Article  CAS  Google Scholar 

  18. Ray S, Konar S, Jana A, Das K, Butcher RJ, Mondal TK, Kar SK (2013) Polyhedron 50:51–58

    Article  CAS  Google Scholar 

  19. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  20. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  21. Marcus Y (1993) Chem Soc Rev 22:409–416

    Article  CAS  Google Scholar 

  22. Bag B, Mondal N, Mitra S, Gramlich V, Ribas J, El Fallah MS (2001) Polyhedron 20:2113–2116

    Article  CAS  Google Scholar 

  23. Castillo O, Luque A, Julve M, Lloret F, Román P (2001) Inorg Chim Acta 315:9–17

    Article  CAS  Google Scholar 

  24. Mautner FA, Louka FR, Massoud SS (2009) J Mol Struct 921:333–340

    Article  CAS  Google Scholar 

  25. Golchoubian H, Rezaee E (2009) J Mol Struct 927:91–95

    Article  CAS  Google Scholar 

  26. Castillo O, Muga I, Luque A, Gutiérrez-Zorrilla JM, Sertucha J, Vitoria P, Román P (1999) Polyhedron 18:1235–1245

    Article  CAS  Google Scholar 

  27. Raman N, Esthar S, Thangaraja C (2004) J Chem Sci 116:209–213

    Article  CAS  Google Scholar 

  28. Geary W (1971) J Coord Chem Rev 7:81–122

    Article  CAS  Google Scholar 

  29. Addison AW, Rao TN, Reedijk J, Van Rijn J, Verschoor GC (1984) J Chem Soc, Dalton Trans 7:1349–1356

    Article  Google Scholar 

  30. Andrade SG, Gonçalves LCS, Jorge FE (2008) J Mol Struct THEOCHEM 864:20–25

    Article  CAS  Google Scholar 

  31. Tamer Ö, Avcı D, Atalay Y (2014) Spectrochim Acta A 117:78–86

    Article  CAS  Google Scholar 

  32. Exner O (1988) In correlation analysis of chemical data. Plenum Press, New York

    Google Scholar 

  33. Acevedo-Martınez J, Escalona-Arranz JC, Villar-Rojas A, Tellez-Palmero F, Perez-Roses R, Gonzalez L, Carrasco-Velar R (2006) J Chromatogr A 1102:238–244

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support of the University of Mazandaran of the Islamic Republic of Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Golchoubian.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samimi, R., Golchoubian, H. Dinuclear copper(II) complexes with ethylenediamine derivative and bridging oxalato ligands: solvatochromism and density functional theory studies. Transit Met Chem 42, 643–653 (2017). https://doi.org/10.1007/s11243-017-0170-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-017-0170-8

Navigation