Skip to main content
Log in

Coordination assemblies of rigid–flexible 1,3-bis(5-(pyridine-2-yl)-1,2,4-triazole-3-yl)propane ligands with MCl2 (M = Fe, Co, Cu or Zn): structural diversity and mass spectra

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Reactions of the rigid–flexible N-heterocycle 1,3-bis(5-(pyridine-2-yl)-1,2,4-triazole-3-yl) propane (H2L) with MCl2 (M = Fe, Co, Cu or Zn) gave coordination complexes, {[Fe III2 Cl4(H2L)2]·2Cl}·EtOH·H2O (1), {[Co3Cl5(HL)]·H2O} n (2), {[Co4Cl4(H2L)2(H2O)4]·[CoCl4]2}·H2O (3), [Cu2Cl3(HL)(H2O)]6·5H2O (4), [Cu II2 CuICl4(HL)] n (5), {[Zn2Cl2(L)H2O]·H2O} n (6) and [Zn4Cl6(HL)2] (7), which have been characterized by single-crystal X-ray diffraction. Structural analysis reveals that the pyridine triazole ligand attains versatile coordination modes in these complexes. Complexes 1, 3, 4 and 7 consist of 0D clusters with binuclear or tetranuclear units; complex 2 presents a 2D network accompanied by HL and chloride bridges; complexes 5 and 6 show 1D chains with [Cu3] and [Zn2] subunits. In addition, the electrospray ionization mass spectrometry properties of selected complexes were investigated, revealing the stabilities and structural states of these complexes in solution. These results indicate that H2L is an excellent multiconnection linker for the construction of diverse coordination complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhao JP, Yang Q, Liu ZY, Zhao R, Hu BW, Du M, Chang Z, Bu XH (2012) Chem Commun 48:6568–6570

    Article  CAS  Google Scholar 

  2. Lama P, Mrozinski J, Bharadwaj PK (2012) Cryst Growth Des 12:3158–3168

    Article  CAS  Google Scholar 

  3. Faraudo J, Andreu JS, Calero C, Camacho J (2016) Adv Funct Mater 26:3837–3858

    Article  CAS  Google Scholar 

  4. Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AO, Snurr RQ, O’Keeffe M, Kim J, Yaghi OM (2010) Science 329:208–424

    Article  Google Scholar 

  5. Foo ML, Horike S, Inubushi Y, Kitagawa S (2012) Angew Chem Int Ed 51:6107–6111

    Article  CAS  Google Scholar 

  6. Zhang H, Sheng TL, Hu SM, Zhuo C, Li HR, Fu RB, Wen YH, Wu XT (2016) Cryst Growth Des 16:3154–3162

    Article  CAS  Google Scholar 

  7. Dey B, Saha R, Mukherjee P (2013) Chem Commun 49:7064–7066

    Article  CAS  Google Scholar 

  8. Shi PF, Hu HC, Zhang ZY, Xiong G, Zhao B (2015) Chem Commun 51:3985–3988

    Article  CAS  Google Scholar 

  9. Xu H, Hu HC, Cao CS, Zhao B (2015) Inorg Chem 54:4585–4587

    Article  CAS  Google Scholar 

  10. Alberola A, Coronado E, Galán-Mascarós JR, Giménez-Saiz C, Gómez-García CJ (2003) J Am Chem Soc 125:10774–10775

    Article  CAS  Google Scholar 

  11. Okawa H, Sadakiyo M, Yamada T, Maesato M, Ohba M, Kitagawa H (2013) J Am Chem Soc 135:2256–2262

    Article  CAS  Google Scholar 

  12. Pan J, Liu CP, Jiang FL, Wu MY, Chen L, Qian JJ, Su KZ, Wan XY, Hong MC (2015) Cryst Eng Comm 17:1541–1548

    Article  CAS  Google Scholar 

  13. Li JC, Li HX, Li HY, Gong WJ, Lang JP (2016) Cryst Growth Des 16:1617–1625

    Article  CAS  Google Scholar 

  14. Lu WG, Jiang L, Feng XL, Lu TB (2008) Cryst Growth Des 8:986–994

    Article  CAS  Google Scholar 

  15. Tian AX, Ying J, Peng J, Sha JQ, Pang HJ, Zhang PP, Chen Y, Zhu M, Su ZM (2009) Inorg Chem 48:100–110

    Article  CAS  Google Scholar 

  16. Wang YL, Yuan DQ, Bi WH, Li X, Li XJ, Li F, Cao R (2005) Cryst Growth Des 5:1849–1855

    Article  CAS  Google Scholar 

  17. Lu YB, Wang MS, Zhou WW, Xu G, Guo GC, Huang JS (2008) Inorg Chem 47:8935–8942

    Article  CAS  Google Scholar 

  18. Zheng B, Dong H, Bai J, Li Y, Li S, Scheer M (2008) J Am Chem Soc 130:7778–7779

    Article  CAS  Google Scholar 

  19. Kotsuchibashi Y, Takiguchi T, Ebara M, Aoyagi T (2017) Polym Chem 8:295–302

    Article  CAS  Google Scholar 

  20. Long LS (2010) Cryst Eng Comm 12:1354–1365

    Article  CAS  Google Scholar 

  21. Tsaramyrsi M, Kaliva M, Salifoglou A, Raptopoulou CP, Terzis A, Tangoulis V, Giapintzakis J (2001) Inorg Chem 40:5772–5779

    Article  CAS  Google Scholar 

  22. Zhang L, Lu S, Zhang C, Du CX, Hou HW (2015) CrystEngComm 17:846–855

    Article  CAS  Google Scholar 

  23. Gusev AN, Shul’gin VF, Meshkova SB, Doga PG, Hasegawa M, Aleksandrov GG, Eremenko IL, Linert W (2012) Inorg Chim Acta 387:321–326

    Article  CAS  Google Scholar 

  24. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, Streek J, Wood PA (2008) J Appl Crystallogr 41:466–470

    Article  CAS  Google Scholar 

  25. Sheldrick GM (2008) Acta Cryst A64:112–122

    Article  Google Scholar 

  26. Sheldrick GM (2015) Acta Cryst C71:3–8

    Google Scholar 

  27. Wu Q, Esteghamatian M, Hu NX, Popovic Z, Enright G, Tao Y, Díorio M, Wang S (2000) Chem Mater 12:79–83

    Article  CAS  Google Scholar 

  28. McGarrah JE, Kim YJ, Hissler M, Eisenberg R (2001) Inorg Chem 40:4510–4511

    Article  CAS  Google Scholar 

  29. Ding CX, Li X, Ding YB, Li X, Weng S, Xie YS (2012) Cryst Growth Des 12:3465–3473

    Article  CAS  Google Scholar 

  30. Carsten B, He F, Son HJ, Xu T, Yu L (2011) Chem Rev 111:1493–1528

    Article  CAS  Google Scholar 

  31. Gu YP, Cui R, Zhang ZL, Xie ZX, Pang DW (2012) J Am Chem Soc 134:79–82

    Article  CAS  Google Scholar 

  32. Chang XH, Zhao Y, Han ML, Ma LF, Wang LY (2014) Cryst Eng Comm 16:6417–6424

    Article  CAS  Google Scholar 

  33. Guo JS, Xu G, Jiang XM, Zhang MJ, Liu BW, Guo GC (2014) Inorg Chem 53:4278–4280

    Article  CAS  Google Scholar 

  34. Yang Y, Yang J, Du P, Liu YY, Ma JF (2014) Cryst Eng Comm 16:6380–6390

    Article  CAS  Google Scholar 

  35. Xu GH, Tang BB, Hao L, Liu GL, Li H (2017) Cryst Eng Comm 19:781–787

    Article  CAS  Google Scholar 

  36. Song YF, Long DL, Kelly SE, Cronin L (2008) Inorg Chem 47:9137–9139

    Article  CAS  Google Scholar 

  37. Guo MZ, Yin DY, Han J, Li X, Zhang LY, Du Y, Wang HB, Guo C, Tang DQ (2017) Rapid Commun Mass Spectrom 31:9–15

    Article  CAS  Google Scholar 

  38. Tsunashima R, Long DL, Miras HN, Gabb D, Pradeep CP, Cronin L (2010) Angew Chem Int Ed 49:113–116

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We fully grate acknowledge the National Nature Science Foundation of China (Project Nos. 21461003 and 21361003), Guangxi Natural Science Foundation of China (2016GXNSFFA380010, 2016GXNSFAA380206, 2014GXNSFBA118056) and the Foundation of Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (CMEMR2015-A11, CMEMR2016-A11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Ping Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, X., Shu, C., Li, H. et al. Coordination assemblies of rigid–flexible 1,3-bis(5-(pyridine-2-yl)-1,2,4-triazole-3-yl)propane ligands with MCl2 (M = Fe, Co, Cu or Zn): structural diversity and mass spectra. Transit Met Chem 42, 533–542 (2017). https://doi.org/10.1007/s11243-017-0158-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-017-0158-4

Navigation