Skip to main content
Log in

Inner-sphere oxidation of a ternary dipicolinatochromium(III) complex involving a malonic acid co-ligand

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The oxidation of a ternary complex of chromium(III), [CrIII(DPA)(Mal)(H2O)2], involving dipicolinic acid (DPA) as primary ligand and malonic acid (Mal) as co-ligand, was investigated in aqueous acidic medium. The periodate oxidation kinetics of [CrIII(DPA)(Mal)(H2O)2] to give Cr(VI) under pseudo-first-order conditions were studied at various pH, ionic strength and temperature values. The kinetic equation was found to be as follows: \( {\text{Rate}} = {{\left[ {{\text{IO}}_{4}^{ - } } \right]\left[ {{\text{Cr}}^{\text{III}} } \right]_{\text{T}} \left( {{{k_{5} K_{5} + k_{6} K_{4} K_{6} } \mathord{\left/ {\vphantom {{k_{5} K_{5} + k_{6} K_{4} K_{6} } {\left[ {{\text{H}}^{ + } } \right]}}} \right. \kern-0pt} {\left[ {{\text{H}}^{ + } } \right]}}} \right)} \mathord{\left/ {\vphantom {{\left[ {{\text{IO}}_{4}^{ - } } \right]\left[ {{\text{Cr}}^{\text{III}} } \right]_{\text{T}} \left( {{{k_{5} K_{5} + k_{6} K_{4} K_{6} } \mathord{\left/ {\vphantom {{k_{5} K_{5} + k_{6} K_{4} K_{6} } {\left[ {{\text{H}}^{ + } } \right]}}} \right. \kern-0pt} {\left[ {{\text{H}}^{ + } } \right]}}} \right)} {\left\{ {\left( {\left[ {{\text{H}}^{ + } } \right] + K_{4} } \right) + \left( {K_{5} \left[ {{\text{H}}^{ + } } \right] + K_{6} K_{4} } \right)\left[ {{\text{IO}}_{4}^{ - } } \right]} \right\}}}} \right. \kern-0pt} {\left\{ {\left( {\left[ {{\text{H}}^{ + } } \right] + K_{4} } \right) + \left( {K_{5} \left[ {{\text{H}}^{ + } } \right] + K_{6} K_{4} } \right)\left[ {{\text{IO}}_{4}^{ - } } \right]} \right\}}} \) where k 6 (3.65 × 10−3 s−1) represents the electron transfer reaction rate constant and K 4 (4.60 × 10−4 mol dm−3) represents the dissociation constant for the reaction \( \left[ {{\text{Cr}}^{\text{III}} \left( {\text{DPA}} \right)\left( {\text{Mal}} \right)\left( {{\text{H}}_{2} {\text{O}}} \right)_{2} } \right]^{ - } \rightleftharpoons \left[ {{\text{Cr}}^{\text{III}} \left( {\text{DPA}} \right)\left( {\text{Mal}} \right)\left( {{\text{H}}_{2} {\text{O}}} \right)\left( {\text{OH}} \right)} \right]^{2 - } + {\text{H}}^{ + } \) and K 5 (1.87 mol−1 dm3) and K 6 (22.83 mol−1 dm3) represent the pre-equilibrium formation constants at 30 °C and I = 0.2 mol dm−3. Hexadecyltrimethylammonium bromide (CTAB) was found to enhance the reaction rate, whereas sodium dodecyl sulfate (SDS) had no effect. The thermodynamic activation parameters were estimated, and the oxidation is proposed to proceed via an inner-sphere mechanism involving the coordination of IO4 to Cr(III).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Woodward MP, Youngy WW, Bloodgood RA (1985) J Immunol Methods 78:143

    Article  CAS  Google Scholar 

  2. Symons MCR (1955) J Chem Soc, 2794–2796. doi:10.1039/JR9550002794

  3. Abdel-Khalek AA, Elsemongy MM (1989) Trans Met Chem 14:206

    Article  CAS  Google Scholar 

  4. Ewais HA, Dahman FD, Abdel-Khalek AA (2009) Central J Chem 3:3

    Article  Google Scholar 

  5. Hassan HA, Otaibi FD, Abdel-Khalek AA (2006) Inorg React Mech 6:39

    Google Scholar 

  6. Ewais HA, Al-Orabi RO, Abdulla AY (2016) Trans Met Chem 41:427

    Article  CAS  Google Scholar 

  7. EL-Ziri FR, Sulfab Y (1977) Inorg Chim Acta 25:15

    Article  Google Scholar 

  8. Ewais HA, Ismail IMI, Qusti AH, Abdel-Khalek AA (2013) Oxid Commun 36:601

    CAS  Google Scholar 

  9. Abdel-Khalek AA, Elsmongy MM (1988) Bull Chem Soc Jpn 61:4407

    Article  CAS  Google Scholar 

  10. Abdel-Hady AM (2000) Trans Met Chem 25:437

    Article  CAS  Google Scholar 

  11. Hassan ES, Abdel-Khalek AA (2007) Inorg React Mech 6:247

    Google Scholar 

  12. Ewais HA, Habib MA, Elroby SAK (2010) Trans Met Chem 35:73

    Article  CAS  Google Scholar 

  13. Levina A, Codd R, Dillon CT (2003) Prog Inorg Chem 51:145

    CAS  Google Scholar 

  14. Levina A, Lay PA (2005) Coord Chem Rev 249:281

    Article  CAS  Google Scholar 

  15. Wilkins RG (1991) Kinetics and mechanism of reactions of transition metal complexes, 2nd edn. VCH Publishers Inc, NewYork

    Book  Google Scholar 

  16. Rodrıguez A, Del Mar Graciani M, Balahura R, Moy’a ML (1996) J Phys Chem 100:16978

    Article  Google Scholar 

  17. Ewais HA (2002) Trans Met Chem 27:562

    Article  CAS  Google Scholar 

  18. Lever ABP (1984) Inorganic electronic spectroscopy. Elsevier, Amsterdam

    Google Scholar 

  19. Hadinec I, Jensovsky L, Linek A, Synecek V (1960) Naturwiss 47:377

    Article  CAS  Google Scholar 

  20. Ray P (1975) Inorg Synth 5:201

    Google Scholar 

  21. Crouthamel CE, Hayes AM (1951) J Am Chem Soc Jpn 73:82

    Article  CAS  Google Scholar 

  22. Kassim AY, Sulfab Y (1977) Inorg Chim Acta 22:169

    Article  Google Scholar 

  23. Ali IH, Sulfab Y (2011) Inter J Chem Kinet 43:563

    Article  CAS  Google Scholar 

  24. Fedler JH, Fendler EJ (1975) Catalysis in micellar and macromolecules systems. Academic Press, New York

    Google Scholar 

  25. Weaver MJ, Yee EL (1980) Inorg Chem 19:1936

    Article  CAS  Google Scholar 

  26. Mcardle JV, Coyle CL, Gray HB, Yoneda CS, Howerda RA (1977) J Am Chem Soc 99:2483

    Article  CAS  Google Scholar 

  27. Wherland S, Gray HB (1977) In: Dolphin D (ed) Biological aspects of inorganic chemistry. Wiley, New York, p 189

    Google Scholar 

  28. Menger FM, Portnoy CE (1967) J Am Chem Soc 89:4698

    Article  CAS  Google Scholar 

  29. Al-Awadi N, Wiliams AJ (1999) Org Chem 55:4359

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (130–663–D1435). The authors, therefore, gratefully acknowledge the DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed H. Abdel-Salam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basaleh, A.S., Abdel-Salam, A.H. Inner-sphere oxidation of a ternary dipicolinatochromium(III) complex involving a malonic acid co-ligand. Transit Met Chem 41, 713–719 (2016). https://doi.org/10.1007/s11243-016-0073-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-016-0073-0

Keywords

Navigation