Skip to main content
Log in

Synthesis, structural characterisation and catalytic application of dichloro(η 6-p-cymene){diphenyl(3-methyl-2-indolyl)phosphine}ruthenium(II) in the transfer hydrogenation of ketones

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The synthesis and investigation of ruthenium complexes containing the relatively unexplored ligand, diphenyl-2-(3-methyl)indolylphosphine, is presented herein. The complexes [RuCl2{PPh2(C9H8N)}3], [Ru2(μ-Cl)3(Cl)(MeCN){PPh2(C9H8N)}4] and [RuCl2(η 6-p-cymeme){PPh2(C9H8N)}] have been studied. Single crystals of the latter two complexes have been prepared and investigated by X-ray crystallography. A detailed examination of [RuCl2(η 6-p-cymeme){PPh2(C9H8N)}] has been carried out. This complex was found to be an active catalyst in the catalytic transfer hydrogenation of ketones.

Graphical Abstract

The complex, [RuCl2(η 6-p-cymeme){PPh2(C9H8N)}], was synthesised and fully characterised by spectroscopic, analytical and structural methods. The complex was also found to be an active catalyst in the transfer hydrogenation of ketones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Mixtures containing [RuCl2(COD)]n and 2 equivalents of L were heated to reflux in MeCN for several days. The 31P{1H} NMR spectrum of the reaction mixture revealed mostly free ligand with only traces of a new species at 13.9 ppm (<10 %) which was likely to correspond to the target product, RuCl2(COD)L. The lack of reactivity is presumably due to the inability of L to break the chloride bridges in the polymeric starting material. Due the this lack of reactivity, the route was not further explored.

  2. We found that removal of the solvents by evaporation according to standard methods led to significant variations in the ratio of substrate to product. These variations were significant particularly in the case of cyclohexanone and cyclohexanol. Accordingly, the reaction solvent was not removed, and a solvent suppression 1H NMR experiment was performed on the reaction mixture. This method was calibrated, at several designated ratios, by measuring the relative integration of substrates to products under the same concentrations as used for the catalytic reactions. Furthermore, all flasks were thoroughly cleaned with aqua regia and subsequently thoroughly washed with water and acetone prior to performing the catalytic tests.

References

  1. Ikariya T (2011) Bull Chem Soc Jpn 84:1

    Article  CAS  Google Scholar 

  2. Chidambaram G, Milstein D (2011) Acc Chem Res 44:588

    Article  Google Scholar 

  3. Dub PA, Ikariya T (2012) ACS Catal 2:1718

    Article  CAS  Google Scholar 

  4. Zhao B, Han Z, Ding K (2013) Angew Chem Int Ed 52:4744

    Article  CAS  Google Scholar 

  5. Doucet H, Ohkuma T, Murata K, Yokozawa T, Kozawa M, Katayama E, England AF, Ikariya T, Noyori R (1998) Angew Chem Int Ed 37:1703

    Article  CAS  Google Scholar 

  6. Yamakawa M, Ito H, Noyori R (2000) J Am Chem Soc 122:1466

    Article  CAS  Google Scholar 

  7. Sandoval CA, Ohkuma T, Muñiz K, Noyori R (2003) J Am Chem Soc 125:13490

    Article  CAS  Google Scholar 

  8. Clapham SE, Hadzovic A, Morris RH (2004) Coord Chem Rev 248:2201

    Article  CAS  Google Scholar 

  9. Chowdhury RL Bäckvall J-E (1991) J Chem Soc Chem Commun 1063–1064

  10. MacInnis MC, MacLean DF, Lundgren RJ, McDonald R, Turculet L (2007) Organometallics 26:6522

    Article  CAS  Google Scholar 

  11. Gladiali S, Alberico E (2006) Chem Soc Rev 35:226

    Article  CAS  Google Scholar 

  12. Amoroso D, Jabri A, Yap GPA, dos Gusev DG, Santos EN, Fogg DE (2004) Organometallics 23:4047

    Article  CAS  Google Scholar 

  13. Zweifel T, Naubron J-V, Büttner T, Ott T, Grötzmache H (2008) Angew Chem Int Ed 47:3245

    Article  CAS  Google Scholar 

  14. Samec JSM, Bäckvall J-E, Andersson PG, Brandt P (2006) Chem Soc Rev 35:237

    Article  CAS  Google Scholar 

  15. Zeng F, Yu Z (2008) Organometallics 27:2898

    Article  CAS  Google Scholar 

  16. Clarke ZE, Maragh PT, Dasgupta TP, Gusev DG, Lough AJ, Addur-Rashid K (2006) Organometallics 25:4113

    Article  CAS  Google Scholar 

  17. Baratta W, Herdtweck E, Siega K, Toniutti M, Rigo P (2005) Organometallics 24:1660

    Article  CAS  Google Scholar 

  18. Zotto AD, Baratta W, Ballico M, Herdtweck E, Pigo P (2007) Organometallics 26:5636

    Article  Google Scholar 

  19. Zhao M, Yu Z, Yan S, Li Y (2009) J Organomet Chem 694:3068

    Article  CAS  Google Scholar 

  20. Zhao M, Yu Z, Yan S, Li Y (2009) Tetrahedron Lett 50:4624

    Article  CAS  Google Scholar 

  21. Zeng F, Yu Z (2009) Organometallics 28:1855

    Article  CAS  Google Scholar 

  22. Rahman MS, Prince PD, Steed JW, Hii KK (2002) Organometallics 21:4927

    Article  CAS  Google Scholar 

  23. Crochet P, Gimeno J, Borge J, García-Granda S (2003) New J Chem 27:414

    Article  CAS  Google Scholar 

  24. de Araujo MP, de Figueiredo AT, Bogado AL, Poelhsitz GV, Ellena J, Castellano EE, Donnici CL, Comasseto JV, Batista AA (2005) Organometallics 24:6159

    Article  Google Scholar 

  25. Lau CP, Ng SM, Jia G, Lin Z (2007) Coord Chem Rev 251:2223

    Article  CAS  Google Scholar 

  26. Aznar R, Grabulosa A, Mannu A, Muller G, Sainz D, Moreno V, Font-Bardia M, Calvet T, Lorenzo J (2013) Organometallics 32:2344

    Google Scholar 

  27. Bennett MA, Smith AK (1974) J Chem Soc Dalton Trans 233–241

  28. Carriedo GA, Crochet P, García Alonso FJ, Gimeno J, Presa-Soto A (2004) Eur J Inorg Chem 3668–3674

  29. Wang L, Yang Q, Fu H-Y, Chen H, Yuan M-L, Li R-X (2011) Appl Organomet Chem 25:626

    Article  CAS  Google Scholar 

  30. Grabulosa A, Mannu A, Mezzetti A, Muller G (2012) J Organomet Chem 696:4221

    Article  CAS  Google Scholar 

  31. Grabulosa A, Mannu A, Alberico E, Denurra S, Gladiali S, Muller GJ (2012) Mol Catal A Chem 363–364:49

    Article  Google Scholar 

  32. Tsoureas N, Hamilton A, Haddow MF, Harvey JN, Orpen AG, Owen GR (2013) Organometallics 32:2840

    Article  CAS  Google Scholar 

  33. Owen GR (2012) Chem Soc Rev 41:3535

    Article  CAS  Google Scholar 

  34. Zech A, Haddow MF, Othman H, Owen GR (2012) Organometallics 31:6753

    Article  CAS  Google Scholar 

  35. Dyson G, Zech A, Rawe BW, Haddow MF, Hamilton A, Owen GR (2011) Organometallics 30:5844

    Article  CAS  Google Scholar 

  36. Tsoureas N, Kuo Y–Y, Haddow MF, Owen GR (2011) Chem Commun 47:484

    Article  CAS  Google Scholar 

  37. Tsoureas N, Bevis T, Butts CP, Hamilton A, Owen GR (2009) Organometallics 28:5222

    Google Scholar 

  38. Rudolf GC, Hamilton A, Orpen AG, Owen GR (2009) Chem Commun 533–555

  39. Owen GR, Tsoureas N, Hamilton A, Orpen AG (2008) Dalton Trans 6039–6044

  40. Owen GR, Tsoureas N, Hope RF, Kuo Y-Y, Haddow MF (2011) Dalton Trans 40:5906

    Article  CAS  Google Scholar 

  41. Tsoureas N, Nunn J, Bevis T, Haddow MF, Hamilton A, Owen GR (2011) Dalton Trans 40:951

    Google Scholar 

  42. Tsoureas N, Hope RF, Haddow MF, Owen GR (2011) Eur J Inorg Chem 5233–5241

  43. Kuo Y-Y, Haddow MF, Perez-Redondo A, Owen GR (2010) Dalton Trans 39:6239

  44. Yu JO, Lam E, Sereda JL, Rampersad NC, Lough AJ, Browning CS, Farrar DH (2005) Organometallics 24:37

    Google Scholar 

  45. Lam E, Farrar DH, Browning CS, Lough AJ (2004) Dalton Trans 3383–3388

  46. Yu JO, Browning CS, Farrar DH (2008) Chem Commun 1020–1022

  47. Koshevoy IO, Shakirova JR, Melnikov AS, Haukka M, Tunik SP, Pakkanena TA (2011) Dalton Trans 40:7927

    Google Scholar 

  48. Berens U, Brown JM, Long J, Selke R (1996) Tetrahedron Asymmetry 7:285

  49. Artemova NV, Chevykalova MN, Luzikov YN, Nifant’ev IE, Nifant’ev EE (2004) Tetrahedron 60:10365

  50. So CM, Yeung CC, Lau CP, Kwong FY (2008) J Org Chem 73:7803

    Google Scholar 

  51. Wassenaar J, Kuil M, Reek JNH (2008) Adv Synth Catal 350:1610

  52. Wassenaar J, Reek JNH (2007) Dalton Trans 3750–3753

  53. Wassenaar J, van Zutphen S, Mora G, Le Floch P, Siegler MA, Spek AL, Reek JNH (2009) Organometallics 28:2724

    Google Scholar 

  54. Ciaridge TDW, Long JM, Brown JM, Hibbs D, Hursthouse MB (1997) Tetrahedron 53:4035

    Google Scholar 

  55. Penno D, Koshevoy IO, Estevan F, Sana M, Ubeda MA, Pérez-Prieto J (2010) Organometallics 29:703

    Article  CAS  Google Scholar 

  56. Bauer RC, Gloaguen Y, Lutz M, de Reek JNH, van der Bruina B, Vlugt JI (2011) Dalton Trans 40:8822

    Article  CAS  Google Scholar 

  57. Bonet A, Gulyás H, Koshevoy IO, Estevan F, Sanaú M, Úbeda MA, Fernández E (2010) Chem Eur J 16:6382

    Article  CAS  Google Scholar 

  58. Kondoh A, Yorimitsu H, Oshima K (2010) Org Lett 12:1476

    Article  CAS  Google Scholar 

  59. Noyori R, Hashiguchi S (1997) Acc Chem Res 30:97

    Article  CAS  Google Scholar 

  60. Zeng F, Yu Z (2008) Organometallics 27:2898

    Article  CAS  Google Scholar 

  61. Uson R, Oro LA, Sariego R, Esteruelas MA (1981) J Organomet Chem 214:399

    Article  CAS  Google Scholar 

  62. Zanotti-Gerosa A, Hems W, Groarke M, Hancock F (2005) Platin Met Rev 49:158

    Article  CAS  Google Scholar 

  63. Gilbert JD, Wilkinson G (1969) J Chem Soc (A) 1749–1753

  64. Jung CW, Garrou PE, Hoffman PR, Caulton KG (1984) Inorg Chem 23:726

    Article  CAS  Google Scholar 

  65. Fogg DE, James BR (1997) Inorg Chem 36:1961

    Article  CAS  Google Scholar 

  66. Joshi AM, Thorburn IS, Rettig JS, James BR (1992) Inorg Chim Acta 198–200:283

    Article  Google Scholar 

  67. Amoroso D, Yap GPA, Fogg DE (2001) Can J Chem 79:958

    Article  CAS  Google Scholar 

  68. Getty AD, Tai C-C, Linehan JC, Jessop PG, Olmstead MM, Rheingold AL (2009) Orgamometallics 28:5466

    Article  CAS  Google Scholar 

  69. da Silva AC, Piotrowski H, Mayer P, Polborn K, Severin K (2001) Eur J Inorg Chem 685–691

  70. Cotton FA, Torralba RC, Matusz M (1991) Inorg Chem 30:2196

  71. Mothes E, Sentets S, Luquin MA, Mathieu R, Lugan N, Lavigne G (2008) Organometallics 27:1193

    Article  CAS  Google Scholar 

  72. Yang L, Krüger A, Neels A, Albrecht M (2008) Organometallics 27:3161

    Article  CAS  Google Scholar 

  73. Herberhold M, Yan H, Milius W (2000) J Organomet Chem 598:142

    Article  CAS  Google Scholar 

  74. Hodson E, Simpson SJ (2004) Polyhedron 23:2695

    Article  CAS  Google Scholar 

  75. Bruno G, Panzalorto M, Nicoló F, Arena CG, Cardiano P (2000) Acta Crystallogr C 56:e429

    Article  Google Scholar 

  76. Hafner A, der Miihlebach A, Schaaf PA (1997) Angew Chem Int Ed Eng 36:2121

    Article  CAS  Google Scholar 

  77. Immirzi A, Musco A (1977) Inorg Chim Acta 25:L41

    Article  CAS  Google Scholar 

  78. Carrión MC, Jalón FA, Manzano BR, Rodríguez AM, Sepúlveda F, Maestro M (2007) Eur J Inorg Chem 3961–3973

  79. Le Page MD, James BR (2000) Chem Commun 1647–1648

  80. Bertoli M, Choualeb A, Gusev DG, Lough AJ, Major Q, Moore B (2011) Dalton Trans 40:8941

    Article  CAS  Google Scholar 

  81. Bruker-AXS SAINT V7.60A

  82. Sheldrick GM SADABS V2008/1-2, University of Göttingen, Germany

  83. Sheldrick GM (2008) Acta Cryst A 64:112

    Article  CAS  Google Scholar 

  84. Farrugia LJ (1997) ORTEP-3 for Windows v2.02. J Appl Cryst 30:565

    Article  CAS  Google Scholar 

  85. POV-Ray for Windows v3.6.2, Persistence of Vision Pty. Ltd., 2004, computer software, retrieved from http://www.povray.org/download/

Download references

Acknowledgments

The authors thank the Royal Society for a Royal Society Dorothy Hodgkin Research Fellowship for GRO and Johnson Matthey for the generous loan of ruthenium salts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gareth R. Owen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, YY., Haddow, M.F., Jamieson, A.L. et al. Synthesis, structural characterisation and catalytic application of dichloro(η 6-p-cymene){diphenyl(3-methyl-2-indolyl)phosphine}ruthenium(II) in the transfer hydrogenation of ketones. Transition Met Chem 38, 641–648 (2013). https://doi.org/10.1007/s11243-013-9732-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-013-9732-6

Keywords

Navigation