Skip to main content
Log in

Selective oxidation of aromatic hydrocarbons by potassium and phosphorous-modified iron oxide–silica nanocomposite

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Supported iron catalysts are active for hydrocarbon oxidation with H2O2, but the hydrogen peroxide dismutation is a shortcoming that may constrain their applications. Herein, we attempted to address this problem using potassium and phosphate-doped iron oxide–silica nanocomposite (KPFeSi) synthesized via sol–gel methods. The promoted silica–iron oxide nanocomposite has been characterized by elemental analyses, FTIR, X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface-size determination. The synthesized KPFeSi was an active catalyst in the low-temperature liquid phase oxidation of various alkyl aromatics with hydrogen peroxide in conversions of 31–78%. Furthermore, the direct oxidation of benzene into phenol using hydrogen peroxide has been achieved in the absence of any acid with this KPFeSi compound.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bohnet M (2003) Ullmann’s encyclopedia of industrial chemistry, 7th edn. Wiley-VCH, Weinheim

    Google Scholar 

  2. Rosowski F, Storck S, Zühlke J (2008) In: Ertl G, Knzinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, 2nd edn. Wiley-VCH, Weinheim, p 3425

  3. Schmidt RJ (2005) Appl Catal A 208:89–103

    Google Scholar 

  4. Yoo JS, Donohue JA, Kleefisch MS, Lin PS, Elfline SD (1993) Appl Catal A 105:83–105

    Article  CAS  Google Scholar 

  5. Seki T, Baiker M (2009) Chem Rev 109:2409–2454

    Article  CAS  Google Scholar 

  6. Ilyas M, Sadiq M (2009) Catal Lett 128:337–342

    Article  CAS  Google Scholar 

  7. Hronec M, Hrabe Z (1986) Ind Eng Chem Prod Res Dev 25:257–261

    Article  CAS  Google Scholar 

  8. Wang F, Xu J, Li X, Gao J, Zhou L, Ohnishi R (2005) Adv Synth Catal 347:1987–1992

    Article  CAS  Google Scholar 

  9. Suresh AK, Sharma MM, Sridhar T (2000) Ind Eng Chem Res 39:3958–3997

    Article  CAS  Google Scholar 

  10. Abello MC, Gomez MF, Cadus LE (1998) Catal Lett 53:185–192

    Article  CAS  Google Scholar 

  11. Rosowski F, Altwasser S, Dobner CK, Storck S, Zühlke J, Hibst H (2010) Catal Today 157:339–344

    Article  CAS  Google Scholar 

  12. Cannas C, Gatteschi D, Musinu A, Piccaluga G, Sangregorio C (1998) J Phys Chem B 102:7721–7726

    Article  CAS  Google Scholar 

  13. Kochkar H, Figueras F (1997) J Catal 171:420–430

    Article  CAS  Google Scholar 

  14. Qiu F, Li Y, Yang D, Li X, Sun P (2011) Bioresour Technol 102:4150–4156

    Article  CAS  Google Scholar 

  15. Lippincott ER, Van Volkenburg A, Weir CE, Bunting EN (1958) J Res Natl Bur Stand 61:61–70

    CAS  Google Scholar 

  16. Hino H, Sato H (1971) Bull Chem Soc Jpn 44:33–37

    Article  CAS  Google Scholar 

  17. Hoffmann P, Knozinger E (1987) Surface Sci 188:181–198

    Article  CAS  Google Scholar 

  18. McDonald RS (1958) J Phys Chem 62:1168–1178

    Article  CAS  Google Scholar 

  19. Rehspringer JL, Niznansky D (1995) J Non-Cryst Solids 180:191–196

    Article  Google Scholar 

  20. Ehrman SH, Friedlander SK, Zachariah MR (1999) J Mater Res 14:4551–4561

    Article  CAS  Google Scholar 

  21. Essehli R, El Bali B, Benmokhtar S, Fuess H, Svoboda I, Obbade S (2010) J Alloys Compd 493:654–660

    Article  CAS  Google Scholar 

  22. Bahranowski K, Dula R, Gasior M, Labanowska M, Michalik A, Vartikian LA, Serwicka EM (2001) Appl Clay Sci 18:93–101

    Article  CAS  Google Scholar 

  23. Ito S, Okuno T, Matsushima H, Tokii T, Nishida Y (1996) J Chem Soc Dalton Trans 4479–4484

  24. Chen X, Zhang J, Fu X, Antonietti M, Wang X (2009) J Am Chem Soc 131:11658–11659

    Article  CAS  Google Scholar 

  25. Leng Y, Ge H, Zhou C, Wang J (2008) Chem Eng J 145:335–339

    Article  CAS  Google Scholar 

  26. Shilov AE, Shul’pin GB (1997) Chem Rev 97:2879–2932

    Article  CAS  Google Scholar 

  27. Ito S, Mitarai A, Hikino K, Hirama M, Sasaki K (1992) J Org Chem 57:6937–6941

    Article  CAS  Google Scholar 

  28. Walling C (1975) J Am Chem Soc 97:363–367

    Article  CAS  Google Scholar 

  29. Bianchi D, Bortolo R, Tassinari R, Ricci M, Vignola R (2000) Angew Chem Int Ed 39:4321–4323

    Article  CAS  Google Scholar 

  30. Conde A, Díaz-Requejo MM, Pérez PJ (2011) Chem Commun 47:8154–8156

    Article  CAS  Google Scholar 

  31. Masoudian S, Hosseini Monfared H, Aghaei A (2011) Transition Met Chem 36:521–530

    Article  CAS  Google Scholar 

  32. Kitson RE, Itson MG, Mellon MG (1944) Ind Eng Chem Anal Ed 16:379–383

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the financial support of this study by the Zanjan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Hosseini Monfared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masoudian, S., Monfared, H.H. Selective oxidation of aromatic hydrocarbons by potassium and phosphorous-modified iron oxide–silica nanocomposite. Transition Met Chem 37, 37–43 (2012). https://doi.org/10.1007/s11243-011-9554-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-011-9554-3

Keywords

Navigation