Skip to main content
Log in

Silica aerogel–iron oxide nanocomposites: recoverable catalysts for the oxidation of alcohols with hydrogen peroxide

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Various aerogels of silica gel doped with Fe2O3 were prepared by sol–gel method. They were calcined to produce nanoparticle solids. The nanosized mixed oxides were active in the oxidation of alcohols and produced carbonyl compounds in very good to excellent yields using hydrogen peroxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cornell RM, Schwertmann U (1996) The iron oxides. VCH, Germany

    Google Scholar 

  2. Raj K, Moskovitz R (1990) J Magn Magn Mater 85:223

    Article  Google Scholar 

  3. Levy L, Sahoo Y, Kim KS, Berrgey EJ, Prasad PN (2002) Chem Mater 14:3715–3721

    Article  CAS  Google Scholar 

  4. Machala L, Zboril R, Gedank A (2007) J Phys Chem B 111:4003–4018

    Article  CAS  Google Scholar 

  5. Nakamura T, Yamada Y, Yano K (2006) J Mater Chem 16:2417–2419

    Article  CAS  Google Scholar 

  6. Ennas G, Musinu A, Piccaluga G, Zedda D, Gatteschi D, Sangregorio C, Stanger JL, Concas G, Spano G (1998) Chem Mater 10:495–502

    Article  CAS  Google Scholar 

  7. Marchetti SG, Cagnoli MV, Alvarez AM, Gallegos NG, Bengoa JF, Yeramian AA, Mercader RC (1997) J Phys Chem Solids 58:2119–2125

    Article  CAS  Google Scholar 

  8. Yi DK, Lee SS, Ying JY (2006) Chem Mater 18:2459–2461

    Article  CAS  Google Scholar 

  9. Sato S, Takahashi R, Sodesawa T, Tanaka R (2003) Bull Chem Soc Jpn 76:217–223

    Article  CAS  Google Scholar 

  10. Solzi M (1993) Fundamental properties of nanostructured materials. D. Fiorani and G. Sberveglieri, London

    Google Scholar 

  11. Khalil KMS, Makhlouf SA (2008) Appl Surf Sci 254:3767–3773

    Article  CAS  Google Scholar 

  12. Dai Z, Meiser F, Möhwald H (2005) J Colloid Interface Sci 288:298–300

    Article  CAS  Google Scholar 

  13. Tongpool R, Jindasuwan S (2005) Sens Actuators B 106:523–528

    Article  Google Scholar 

  14. Fabrizioli P, Bürgi T, Baiker A (2002) J Catal 206:143–154

    Article  CAS  Google Scholar 

  15. Clapsaddle BJ, Gash AE, Satcher JH Jr, Simpson RL (2003) J Non-Cryst Solids 331:190–201

    Article  CAS  Google Scholar 

  16. Wang CT, Ro SH (2005) Appl Catal A 285:196–204

    Article  CAS  Google Scholar 

  17. Savii C, Popovici M, Enache C, Subrt J, Niznansky D, Bakardzieva S, Caizer C, Hrianca I (2002) Solid State Ionics 151:219–227

    Article  CAS  Google Scholar 

  18. Alcalá MD, Real C (2006) Solid State Ionics 177:955–960

    Article  Google Scholar 

  19. Battishaa IK, Afify HH, Hamada IM (2005) J Magn Magn Mater 292:440–446

    Article  Google Scholar 

  20. Bogatyrev VM, Guńko VM, Galaburda MV, Borysenko MV, Pokrovskiy VA, Oranska OI, Polshin EV, Korduban OM, Leboda R, Skubiszewska-Zieba J (2009) J Colloid Interface Sci 338:376–388

    Article  CAS  Google Scholar 

  21. Fernández van Raap MB, Sanchez FH, Leyva AG, Japas ML, Cabanillas E, Troiani H (2007) Physica B 398:229–234

    Article  Google Scholar 

  22. Martínez S, Meseguer M, Casas L, Rodríguez E, Molins E, Moreno-Maňas M, Roig A, Sebastián RM, Vallribera A (2003) Tetrahedron 59:1553–1556

    Article  Google Scholar 

  23. Sheldon RA, Kochi JK (1981) Metal-catalyzed oxidation of organic compounds. Academic Press, New York

    Google Scholar 

  24. Hudlicky M (1990) Oxidations in organic chemistry. ACS, Washington, DC

    Google Scholar 

  25. Pybus DH, Sell CS (eds) (1999) The chemistry of fragrances. RSC Paperbacks, Cambridge

    Google Scholar 

  26. Fey T, Fischer H, Bachmann S, Albert K, Bolm C (2001) J Org Chem 66:8154–8159

    Article  CAS  Google Scholar 

  27. Sheldon RA, Arends IWCE, Dijkman A (2000) Catal Today 57:157–166

    Article  CAS  Google Scholar 

  28. Griffith WP, Joliffe JM (1991) Dioxygen activation and homogeneous catalytic oxidation. Elsevier, Amsterdam

    Google Scholar 

  29. Ley SV, Norman J, Griffith WP, Marsden SP (1994) Synthesis 25:639–666

    Google Scholar 

  30. Arends IWCE, Sheldon RA (2002) Top Catal 19:133–141

    Article  CAS  Google Scholar 

  31. Warner PT, Warner JC (1998) Green chemistry theory and practice. Oxford University Press, New York

    Google Scholar 

  32. Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry, 5th edn. Wiley, New York, p 458

    Google Scholar 

  33. Hosseini Monfared H, Amouei Z (2004) J Mol Catal A Chem 217:161–164

    Article  Google Scholar 

  34. Hosseini-Monfared H, Ghorbani M (2001) Monatsh Chem 132:989–992

    Article  Google Scholar 

  35. Hosseini-Monfared H, Ghadimi M (2003) J Chem Res S 313–314

  36. Tatibouët JM (1997) Appl Catal A Gen 148:213–252

    Article  Google Scholar 

  37. Wang CT, Willey RJ (2001) J Catal 202:211–219

    Article  CAS  Google Scholar 

  38. Noyori R, Aoki M, Sato K (2003) Chem Commun 16:1977–1986

    Article  Google Scholar 

  39. Cannas C, Gatteschi D, Musinu A, Piccaluga G, Sangregorio C (1998) J Phys Chem B 102:7721–7726

    Article  CAS  Google Scholar 

  40. Kim GJ, Kim SH (1999) Catal Lett 57:139–143

    Article  CAS  Google Scholar 

  41. Fabrizioli P, Bürgi T, Burgener M, Van Doorslaer S, Baiker A (2002) J Mater Chem 12:619–630

    Article  CAS  Google Scholar 

  42. Armelao L, Granozzi G, Tondello E, Colombo P, Principi G, Lottici PP, Antonioli G (1995) J Non-Cryst Solids 192–193:435–438

    Article  Google Scholar 

  43. Lippincott ER, Van Volkenburg A, Weir CE, Bunting EN (1958) J Res Natl Bur Stand 61:61–70

    CAS  Google Scholar 

  44. Cui H, Zayat M, Levy D (2009) J Alloys Compd 474:292–296

    Article  CAS  Google Scholar 

  45. Cui H, Zayat M, Levy D (2005) Chem Mater 17:5562–5566

    Article  CAS  Google Scholar 

  46. Niznansky D, Rehspringer JL (1995) J Non-Cryst Solids 180:191–196

    Article  CAS  Google Scholar 

  47. Lane BS, Vogt M, DeRose VJ, Burgess K (2002) J Am Chem Soc 124:1946–1954

    Article  Google Scholar 

  48. Ueno S, Yamaguchi K, Yoshida K, Ebitani K, Kaneda K (1998) Chem Commun 295–296

  49. Huheey JE (1983) Inorganic chemistry: principles of structure and reactivity, 3rd edn. Harper and Row Publisher Inc, New York, p 340

    Google Scholar 

  50. Sheldon RA (1993) Top Curr Chem 164:21–34

    CAS  Google Scholar 

  51. Schumb WC, Satterfield CN, Wentworth RL (1955) Hydrogen peroxide. Reinhold, New York

    Google Scholar 

  52. Rode CV, Nehete UN, Dongare MK (2003) Catal Commun 4:365–369

    Article  CAS  Google Scholar 

  53. Adam W, Rao PB, Degen HG, Saha-Mller CR (2000) J Am Chem Soc 122:5654–5655

    Article  CAS  Google Scholar 

  54. Lu XH, Xia QH, Zhan HJ, Yuan HX, Ye CP, Su KX, Xu G (2006) J Mol Catal A Chem 250:62–69

    Article  CAS  Google Scholar 

  55. Shul’pin GB, Golfeto CC, Süss-Fink G, Shul’pina LS, Mandelli D (2005) Tetrahedron Lett 46:4563–4567 and references therein

    Google Scholar 

  56. Pouralimardan O, Chamayou AC, Janiak C, Hosseini-Monfared H (2007) Inorg Chim Acta 360:1599–1608

    Article  CAS  Google Scholar 

  57. Gross Z, Ini S (1997) J Org Chem 62:5514–5521

    Article  CAS  Google Scholar 

  58. Collman JP, Brauman JI, Fitzgerald JP, Hampton PD, Naruta Y, Michida T (1988) Bull Chem Soc Jpn 61:47–57

    Article  CAS  Google Scholar 

  59. Battioni P, Renaud JP, Bartoli JF, Reina-Artiles M, Fort M, Mansuy D (1988) J Am Chem Soc 110:8462–8470

    Article  CAS  Google Scholar 

  60. Pillai UR, Sahle-Demessie E (2004) Appl Catal A 276:139–144

    Article  CAS  Google Scholar 

  61. Wang J, Yan L, Li G, Wang X, Ding Y, Suo J (2005) Tetrahedron Lett 46:7023–7027

    Article  CAS  Google Scholar 

  62. Wang X, Wu G, Wei W, Sun Y (2010) Transition Met Chem 35:213–220

    Article  CAS  Google Scholar 

  63. Kumar V, Thankachan BPP, Prasad R (2010) Appl Catal A 381:8–17

    Article  Google Scholar 

  64. Chaudhari MP, Sawant SB (2005) Chem Eng J 106:111–118

    Article  CAS  Google Scholar 

  65. Jia A, Lou LL, Zhang C, Zhang Y, Liu S (2009) J Mol Catal A Chem 306:123–129

    Article  CAS  Google Scholar 

  66. Salavati-Niasari M, Bazarganipour M (2009) Transition Met Chem 34:605–612

    Article  CAS  Google Scholar 

  67. Xavier KO, Chacko J, Mohammed Yusuff KK (2004) Appl Catal A 258:251–259

    Article  CAS  Google Scholar 

  68. Kanjina W, Trakarnpruk W (2009) Silpakorn U Science & Tech J 3:7–12

    CAS  Google Scholar 

  69. Shi F, Tse MK, Pohl MM, Radnik J, Brückner A, Zhang S, Beller M (2008) J Mol Catal A Chem 292:28–35

    Article  CAS  Google Scholar 

  70. Neumann R, Levin-Elad M (1995) Appl Catal A 122:85–97

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Zanjan University for the financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Hosseini Monfared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masoudian, S., Hosseini Monfared, H. & Aghaei, A. Silica aerogel–iron oxide nanocomposites: recoverable catalysts for the oxidation of alcohols with hydrogen peroxide. Transition Met Chem 36, 521–530 (2011). https://doi.org/10.1007/s11243-011-9498-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-011-9498-7

Keywords

Navigation