Skip to main content
Log in

Structural, electronic and magnetic properties of small gold clusters with a copper impurity

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A set of all-electron scalar relativistic calculations on Au n Cu (n = 1–12) clusters has been performed using density functional theory with the generalized gradient approximation at PW91 level. The lowest energy geometries of Au n Cu clusters may be considered as assemblies of triangular Au3 moieties substituted with one Cu atom at the highest coordinated site. All these lowest energy geometries of the Au n Cu clusters are slightly distorted but retain the planar structures of the Au n+1 clusters due to the strong scalar relativistic effects. The Au–Cu bonds are stronger, and a few Au–Au bonds far from the Cu atom are weaker, than the corresponding Au–Au bonds in pure Au n+1 clusters. After doping with a Cu atom, the thermodynamic stability and chemical reactivity are enhanced to some extent. The odd-numbered Au n Cu clusters with even numbers of valence electrons are more stable than the neighboring even-numbered Au n Cu clusters with odd numbers of valence electrons. Odd–even alternations of magnetic moments and electronic configurations for the Au n Cu clusters can be observed clearly and may be understood in terms of the electron pairing effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fernandez EM, Soler JM, Garzon IL, Balbas LC (2004) Phys Rev B 70:165403–165410

    Article  Google Scholar 

  2. Deka A, Deka RC (2008) J Mol Struct (Theochem) 870:83–91

    Article  CAS  Google Scholar 

  3. Mao HP, Wang HY, Ni Y, Xu GL (2004) Acta Phys Sin 53:1766–1772

    CAS  Google Scholar 

  4. Myoung H, Ge M, Sahu BR, Tarakeswar P, Kim KS (2003) J Chem Phys 107:9994–10002

    Google Scholar 

  5. Hakkinen H, Landman U (2000) Phys Rev B 62:R2287–R2296

    Article  CAS  Google Scholar 

  6. Yuan DW, Gong XG, Wu RQ (2008) Phys Rev B 78:035441–035444

    Article  Google Scholar 

  7. Majumder C, Kandalam AK, Jena P (2006) Phys Rev B 74:205437–205440

    Article  Google Scholar 

  8. Zorriasatein S, Joshi K, Kanhere DG (2008) J Chem Phys 128:184314–184320

    Article  Google Scholar 

  9. Bouwen W, Vanhoutte F, Despa F, Bouckaert S, Neukermans S, Kuhn LT, Weidele H, Lievens P, Silverans RE (1999) Chem Phys Lett 314:227–233

    Article  CAS  Google Scholar 

  10. Darby S, Mortimer-Jones TV, Johnston RL, Roberts C (2002) J Chem Phys 116:1536–1540

    Article  CAS  Google Scholar 

  11. Rao JL, Chaitanya GK, Basavaraja S, Bhanuprakash K, Venkataramana A (2007) J Mol Struct (Theochem) 803:89–95

    Article  CAS  Google Scholar 

  12. Wesendrup R, Hunt T, Schwerdtfeger P (2000) J Chem Phys 112:9356–9363

    Article  CAS  Google Scholar 

  13. Häkkinen H, Moseler M, Landman U (2002) Phys Rev Lett 89:033401–033406

    Article  Google Scholar 

  14. Autschbach J, Siekierski S, Seth M, Schwerdtfeger P, Schwarz WHE (2002) J Comput Chem 23:804–811

    Article  CAS  Google Scholar 

  15. Delley B (1990) J Chem Phys 92:508–519

    Article  CAS  Google Scholar 

  16. Delley B (2000) J Chem Phys 113:7756–7767

    Article  CAS  Google Scholar 

  17. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3870

    Article  CAS  Google Scholar 

  18. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13250

    Article  Google Scholar 

  19. Yang W (1991) Phys Rev Lett 66:1438–1443

    Article  CAS  Google Scholar 

  20. Delley B (2002) Phys Rev B 66:155125–155131

    Article  Google Scholar 

  21. Cleri F, Rosato V (1993) Phys Rev B 48:22–28

    Article  CAS  Google Scholar 

  22. Simard B, Hackett PA (1990) J Mol Spectrosc 142:310–316

    Article  CAS  Google Scholar 

  23. Ho J, Ervin KM, Lineberger WC (1990) J Chem Phys 93:6987–6996

    Article  CAS  Google Scholar 

  24. Tian WQ, Ge MF, Gu FL, Yamada T, Aoki Y (2006) J Phys Chem A 110:6285–6294

    Article  CAS  Google Scholar 

  25. Guo JJ, Yang JX, Dong D (2006) J Mol Struct (Theochem) 764:117–125

    Article  CAS  Google Scholar 

  26. Parr RG, Chattaraj PK (1991) J Am Chem Soc 113:1854–1861

    Article  CAS  Google Scholar 

  27. Pearsom RG (1987) J Chem Educ 64:561–566

    Article  Google Scholar 

  28. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7518

    Article  CAS  Google Scholar 

  29. Assadollahzadeh B, Schwerdtfeger P (2009) J Chem Phys 131:064306–064311

    Article  Google Scholar 

  30. Zhang HL, Tian DX (2008) Comput Mater Sci 42:462–469

    Article  CAS  Google Scholar 

  31. Guvelioglu GH, Ma P, He XY, Forrey RC, Cheng HS (2006) Phys Rev B73:155436–155443

    Google Scholar 

  32. Triguero L, Wahlgren U, Boussard P, Siegbahn P (1995) Chem Phys Lett 237:550–555

    Article  CAS  Google Scholar 

  33. Phala NS, Klatt G, Steen EV (2004) Chem Phys Lett 395:33–38

    Article  CAS  Google Scholar 

  34. Zhao S, Ren YL, Wang JJ, Yin WP (2009) J Molec Struc (Theochem) 897:100–107

    Article  CAS  Google Scholar 

  35. Heer WAD (1993) Rev Mod Phys 65:611–621

    Article  Google Scholar 

  36. Yang JL, Toigo F, Wang KL (1994) Phys Rev B 50:7915–7922

    Article  Google Scholar 

  37. Yamaguchi K, Carbo R, Klobukowski M (eds) (1990) Self-consistent field theory and applications. Elsevier, Amsterdam, p 727

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Fundamental Research Funds for the Central Universities (No. CDJXS10100034).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangjun Kuang or Xinqiang Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuang, X., Wang, X. & Liu, G. Structural, electronic and magnetic properties of small gold clusters with a copper impurity. Transition Met Chem 36, 643–652 (2011). https://doi.org/10.1007/s11243-011-9514-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-011-9514-y

Keywords

Navigation