Skip to main content
Log in

Kinetics and mechanism of the reaction of hydroxopentaaquarhodium(III) ion with l-Arginine in aqueous solution

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of the aqua ligand substitution from hydroxopentaaquarhodium(III) ion, [Rh(H2O)5(OH)]2+, by l-Arginine has been studied spectrophotometrically as a function of Arginine concentration, and temperature, at pH 4.3. The reaction proceeds via a rapid outer sphere association complex formation step followed by two consecutive steps. The first of these involves ligand-assisted anation, while the second involves chelation as the second aqua ligand is displaced. The association equilibrium constant for the outer sphere complex formation has been evaluated together with the rate constants for the two subsequent steps. The activation parameters for both steps have been evaluated using Eyring’s equation. Thermodynamic parameters calculated from the temperature dependence of the outer sphere association equilibrium constants are also consistent with an associative mode of activation. The product of the reaction has been characterized by conductivity measurement and IR spectroscopic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rosenberg B, Vancamp L, Trosko JE, Mansour VH (1969) Nature (London) 222:385

    Article  CAS  Google Scholar 

  2. Umapathy P (1989) Coord Chem Rev 95:129

    Article  CAS  Google Scholar 

  3. Clarke MJ (1980) In: Martell AE (ed) Inorganic chemistry in biology and medicine, ACS Symposium on Ser 140. American Chemical Society, Washington DC p. 157 and references cited therein

    Google Scholar 

  4. Pruchink FP, Bien M, Lachowicz T (1996) Met Bas Drugs 3:185

    Article  Google Scholar 

  5. Clarke MJ (1980) Met Ions Biol Syst 11:231

    CAS  Google Scholar 

  6. Yasbin RE, Matthews CR, Clarke MJ (1980) Chem Biol Interact 31:355

    Article  CAS  Google Scholar 

  7. Cleare MJ, Hydes PC (1980) In: Siegel H (ed) Metal ions in biological systems, vol 2. Marcel Dekker, New York, pp 1–62

    Google Scholar 

  8. Monti-Bragadi C, Ramani L, Samer L, Mestroni G, Zassinovich G (1975) Antimicrob Agents Chemother 825

  9. Mestroni G, Alessio GZ, Bontempi A (1987) Inorg Chim Acta 63:138

    Google Scholar 

  10. Katsaros N, Anagnostopoulou A (2002) Crit Rev Oncol Heamatol 42:297

    Article  CAS  Google Scholar 

  11. Metal in Medicine (2007) J Biol Inorg Chem 12(Suppl 1):S7

    Google Scholar 

  12. Kostova I (2006) Recent patents on anticancer drug discovery 1:1

    Article  CAS  Google Scholar 

  13. Kostova I (2006) Curr Med Chem 13:1085 and references therein

    Article  CAS  Google Scholar 

  14. Pruchnik FP, Jakimowicz P, Cuinik Z, Zakrzewskaczerwinska J, Opolski A, Weitrzyk J, Wojdat E (2002) Inorg Chim Acta 334:59

    Article  CAS  Google Scholar 

  15. Gil ED, Serrano SHP, Ferreira EI, Kubota LT (2002) J Pharm Biomed Anal 29:579

    Article  CAS  Google Scholar 

  16. Tapiero H (2002) l-Arginine. Biomed Pharmacother 56:439

    Article  CAS  Google Scholar 

  17. Stechmiller JK (2005) Arginine supplementation and wound healing. Nutr Clin Practice 20:52

    Article  Google Scholar 

  18. Witte MB, Barbul A (2003) Arginine physiology and its implication for wound healing. Wound Repair Regenerat 11:419

    Article  Google Scholar 

  19. Ayres GH, Forrester JS (1957) J Inorg Nucl Chem 3:365

    Article  CAS  Google Scholar 

  20. Wolsey WC, Reynolds CA, Kleinberg J (1963) Inorg Chem 2:463

    Article  CAS  Google Scholar 

  21. Pneumatikakis G, Hadjiliadis N (1979) J Inorg Nucl Chem 41:429

    Article  CAS  Google Scholar 

  22. Steel D, Verhoeven PFM (2001) Vib Spectrosc 25:29

    Article  Google Scholar 

  23. Martell AE, Smith RM (1974) Critical stability constants, vol I: Amino acids. Plenum Press, New York, p 43

    Google Scholar 

  24. Banyai I, Glaser J, Read MC, Sand Stroem M (1995) Inorg Chem 34:2423

    Article  CAS  Google Scholar 

  25. Weyh JA, Hamm RE (1969) Inorg Chem 8:2298

    Article  CAS  Google Scholar 

  26. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, Oxford

    Google Scholar 

  27. Desiraju GR, Steiner T (1999) The weak hydrogen bonding in structural chemistry and biology. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alak K. Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bera, B.K., Mallick, S., Mandal, A. et al. Kinetics and mechanism of the reaction of hydroxopentaaquarhodium(III) ion with l-Arginine in aqueous solution. Transition Met Chem 35, 541–547 (2010). https://doi.org/10.1007/s11243-010-9361-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-010-9361-2

Keywords

Navigation