Skip to main content
Log in

Kinetics of the uninhibited and ethanol-inhibited CoO, Co2O3 and Ni2O3 catalyzed autoxidation of sulfur(IV) in alkaline medium

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

For getting an insight into the mechanism of atmospheric autoxidation of sulfur(IV), the kinetics of this autoxidation reaction catalyzed by CoO, Co2O3 and Ni2O3 in buffered alkaline medium has been studied, and found to be defined by Eqs. I and II for catalysis by cobalt oxides and Ni2O3, respectively.

$$ - {\text{d}}\left[ {{\text{S}}\left( {{\text{IV}}} \right)} \right]/{\text{d}}t = AK_{ 2} \left[ {{\text{Catalyst}}} \right]\left[ {{\text{S}}\left( {{\text{IV}}} \right)} \right] \left[ {{\text{O}}_{ 2} } \right] /\left( { 1+ K_{ 2} \left[ {{\text{O}}_{ 2} } \right]} \right) $$
(I)
$$ - {\text{d}}\left[ {{\text{S}}\left( {{\text{IV}}} \right)} \right]/{\text{d}}t = k_{ 1} K_{ 1} \left[ {{\text{Ni}}_{ 2} {\text{O}}_{ 3} } \right]\left[ {{\text{S}}\left( {{\text{IV}}} \right)} \right]\left[ {{\text{O}}_{ 2} } \right]/\left\{ { 1+ K_{ 1} \left[ {{\text{S}}\left( {{\text{IV}}} \right)} \right]} \right\} $$
(II)

The values of empirical rate parameters were: A{0.22(CoO), 0.8 L mol−1s−1 (Co2O3)}, K 1{2.5 × 102 (Ni2O3)}, K 2{2.5 × 102(CoO), 0.6 × 102 (Co2O3)} and k 1{5.0 × 10−2(Ni2O3), 1.0 × 10−6(CoO), 1.7 × 10−5 s−1(Co2O3)} at pH 8.20 (CoO and Co2O3) and pH 7.05 (Ni2O3) and 30 °C. This is perhaps the first study in which the detailed kinetics in the presence of ethanol, a well known free radical scavenger for oxysulfur radicals, has been carried out, and the rate laws for catalysis by cobalt oxides and Ni2O3 in the presence of ethanol were Eqs. III and IV, respectively.

$$ - {\text{d}}\left[ {{\text{S}}\left( {{\text{IV}}} \right)} \right]/{\text{d}}t = AK_{ 2} \left[ {{\text{CoO}}} \right]\left[ {{\text{S}}\left( {{\text{IV}}} \right)} \right]\left[ {{\text{O}}_{ 2} } \right]/\left\{ {\left( { 1+ C\left[ {{\text{Ethanol}}} \right]} \right)\left( { 1+ K_{ 2} \left[ {{\text{O}}_{ 2} } \right]} \right)} \right\} $$
(III)
$$ - {\text{d}}\left[ {{\text{S}}\left( {{\text{IV}}} \right)} \right]/{\text{d}}t = {k_1}{K_1}\left[ {{\text{Ni}}_{ 2} {\text{O}}_{ 3} } \right]\left[ {{\text{S}}\left( {{\text{IV}}} \right)} \right]\left[ {{\text{O}}_{ 2} } \right]/\left\{ {\left( { 1+ {K_1}\left[ {{\text{S}}\left( {{\text{IV}}} \right)} \right]} \right)\left( { 1+ C\left[ {{\text{Ethanol}}} \right]} \right)} \right\} $$
(IV)

For comparison, the effect of ethanol on these catalytic reactions was studied in acidic medium also. In addition, alkaline medium, the values of the inhibition factor C were 1.9 × 104 and 4.0 × 10L mol−1 s for CoO and Co2O3, respectively; for Ni2O3, C was only 3.0 × 102 only. On the other hand, in acidic medium, the values of this factor were all low: 20 (CoO), 0.7 (Co2O3) and 1.4 (Ni2O3). Based on these results, a radical mechanism for CoO and Co2O3 catalysis in alkaline medium, and a nonradical mechanism for Ni2O3 in both alkaline and acidic media and for cobalt oxides in acidic media are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Martin LR (1984) In: Calvert JG (ed) SO2, NO and NO2 oxidation mechanisms: atmospheric considerations. Butterworth, Boston, pp 63–100

    Google Scholar 

  2. Prasad DSN, Rani A, Madnavat PVS, Bhargava R, Gupta KS (1991) J Mol Catal 69:395. doi:10.1016/0304-5102(91)80118-M

    Google Scholar 

  3. Prasad DSN, Mehta RK, Parashar P, Madnawat PVS, Rani A, Singh U, Manoj SV, Bansal SP, Gupta KS (2003) J Indian Chem Soc 80:391

    CAS  Google Scholar 

  4. Bhargava R, Prasad DSN, Rani A, Bhargava P, Jain U, Gupta KS (1992) Trans Met Chem 17:238

    Article  CAS  Google Scholar 

  5. Prasad DSN, Rani A, Gupta KS (1992) Environ Sci Technol 26:1361. doi:10.1021/es00031a013

    Article  CAS  Google Scholar 

  6. Gupta KS, Singh R, Saxena D, Manoj SV, Sharma M (1999) Indian J Chem 38A:1129

    CAS  Google Scholar 

  7. Manoj SV, Sharma M, Gupta KS (1999) Atmos Environ 33:1503. doi:10.1016/S1352-2310(98)00241-6

    Article  CAS  Google Scholar 

  8. Conklin MH, Hoffmann MR (1988) Environ Sci Technol 22:899; Craft J, van Eldik R (1989) Inorg Chem 28:2306

  9. Gupta KS, Jain U, Singh A, Mehta RK, Manoj SV, Prasad DSN, Sharma A, Parashar P, Bansal SP (2004) J Indian Chem Soc 81:1083

    CAS  Google Scholar 

  10. Martin LR, Hill MW, Tai AF, Good TW (1991) J Geophys Res 96(D2):3085. doi:10.1029/90JD02611

    Article  CAS  Google Scholar 

  11. Manoj SV, Singh R, Sharma M, Gupta KS (2000) Indian J Chem 39A:507

    CAS  Google Scholar 

  12. Backstrom HLJ (1934) Z Phys Chem B 25:122

    Google Scholar 

  13. Ziajka J, Beer F, Warneck P (1994) Atmos Environ 28:2549. doi:10.1016/1352-2310(94)90405-7

    Article  CAS  Google Scholar 

  14. Ziajka P, Pasiuk-Bronikowska W (2003) Atmos Environ 37:3913. doi:10.1016/S1352-2310(03)00503-X

    Article  CAS  Google Scholar 

  15. Connick RE, Zhang YX (1996) Inorg Chem 35:4613. doi:10.1021/ic951141i

    Article  CAS  Google Scholar 

  16. Connick RE, Zhang YX, Lee S, Adamic R, Chieng P (1995) Inorg Chem 34:4543. doi:10.1021/ic00122a009

    Article  CAS  Google Scholar 

  17. Kuo DTF, Krik DW, Jia CQ (2006) J Sulfur Chem 27:461. doi:10.1080/17415990600945153

    Article  CAS  Google Scholar 

  18. Brandt C, van Eldik R (1995) Chem Rev 95:119. doi:10.1021/cr00033a006

    Article  CAS  Google Scholar 

  19. (a) Hoffman MR, Jacob DJ (1984) In: Calvert JG (ed) SO2, NO and NO2 oxidation mechanisms. Atmospheric considerations. Butterworth, Boston, pp 101–172. (b) Hoffmann MR, Boyce SD (1983) In: Schwartz SE (ed) Trace atmospheric constituents: properties, transformations and fates. Wiley, New York, pp 147–189

  20. Huie RE (1995) In: Barker JR (ed) Progress and problems in atmospheric chemistry. World Scientific Publishng Co., Singapore, pp 374–419; Huie RE, Wayne Sieck L (1999) In: Alfassi ZB (ed) S-Centered radicals. Wiley, New York, pp 63–99

  21. Manoj SV, Mishra CD, Sharma M, Rani A, Jain R, Bansal SP, Gupta KS (2000) Atmos Environ 34:4479; Kulshrestha UC, Sarkar AK, Srivastava SS, Parashar DC (1996) Atmos Environ 30:4149; Rastogi N, Sarin MM (2005) Atmos Environ 39:3313; Khemani LT, Momin GA, Prakasa Rao PS, Safai PD, Singh G, Kapoor RK (1989) Atmos Environ 23:757

  22. Brodzinsky R, Chang SG, Markowitz SS, Novakov T (1980) J Phys Chem 84:3354. doi:10.1021/j100462a009

    Article  CAS  Google Scholar 

  23. Manoj SV, Mudgal PK, Gupta KS (2008) Trans Metal Chem 33:311. doi:10.1007/s11243-007-9045-8

    Article  CAS  Google Scholar 

  24. Huss A Jr, Lim PK, Eckert CA (1978) J Am Chem Soc 108:6253

    Google Scholar 

  25. Wilkins RG (1974) The study of kinetics and mechanism of reactions of transition metal complexes. Allyn and Bacon, Boston, p 108

    Google Scholar 

  26. Alyea HN, Backstrom HLJ (1929) J Am Chem Soc 51:90. doi:10.1021/ja01376a011

    Article  CAS  Google Scholar 

  27. Parks GA (1965) Chem Rev 65:177. doi:10.1021/cr60234a002

    Article  CAS  Google Scholar 

  28. Connick RE, Lee S, Adamic R (1993) Inorg Chem 32:565. doi:10.1021/ic00057a013

    Article  CAS  Google Scholar 

  29. McArdle JV, Hoffmann MR (1983) J Phys Chem 87:5425; Betterton EA, Hoffmann MR (1988) J Phys Chem 92:5962

  30. Bielski BHJ, Cabelli DE, Arudi RL, Ross AB (1985) J Phys Chem Ref Data 14:1067; Sawyer DT, Valentine JS (1981) Acc Chem Res 14:303

    Google Scholar 

  31. Kim KH, Choi JS (1981) J Phys Chem 85:2447. doi:10.1021/j150617a007

    Article  CAS  Google Scholar 

  32. Neta P, Huie RE, Ross AB (1988) J Phys Chem Ref Data 17:11160

    Google Scholar 

  33. Beilke S, Gravenhorst G (1978) Atmos Environ 12:231. doi:10.1016/0004-6981(78)90203-2

    Article  CAS  Google Scholar 

  34. Das TN (2001) J Phys Chem A105:9142. doi:10.1021/jp011255h

    Google Scholar 

  35. Backstrom HLJ (1934) Z Phys Chem 25B:122. Cited in Ref. (19b), p 183

  36. Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley, Singapore, pp 815–848

  37. Sidgwick NV (1950) The chemical elements and their compounds, vol II. Oxford, London, pp 1501–1520

  38. Thacker MA, Scott KL, Simpson ME, Murrey RS, Higginson WCE (1974) J Chem Soc Dalton Trans 647–651

Download references

Acknowledgements

The work was supported by DST and UGC, New Delhi. Authors are grateful to Prof. P. S. Verma, Head, Department of Chemistry, University of Rajasthan, Jaipur for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, K.S., Mehta, R.K., Sharma, A.K. et al. Kinetics of the uninhibited and ethanol-inhibited CoO, Co2O3 and Ni2O3 catalyzed autoxidation of sulfur(IV) in alkaline medium. Transition Met Chem 33, 809–817 (2008). https://doi.org/10.1007/s11243-008-9115-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-008-9115-6

Keywords

Navigation