Skip to main content
Log in

Deactivation mechanism of the simultaneous removal of carbonyl sulphide and carbon disulphide over Fe–Cu–Ni/MCSAC catalysts

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

 The deactivation mechanism of the simultaneous removal of COS and \(\hbox {CS}_{2}\) over a Fe–Cu–Ni/MCSAC catalyst was investigated using SEM/EDS, XPS and in situ DRIFTS methods. The results show that the catalytic hydrolysis of COS and \(\hbox {CS}_{2}\) over the Fe–Cu–Ni/MCSAC catalyst involves two steps: hydrolysis of \(\hbox {COS}/\hbox {CS}_{2}\) and oxidation of \(\hbox {H}_{2}\hbox {S}\). The SEM/EDS and XPS results indicate that that catalytic hydrolysis of \(\hbox {CS}_{2}\) can be achieved by the actions of alkaline groups and active components. When \(\hbox {O}_{2}\) was introduced into the system, oxidation of \(\hbox {H}_{2}\hbox {S}\) occurred \(\textit{via}\hbox {H}_{2}\hbox {S}\rightarrow \hbox {S}\rightarrow \hbox {SO}_{4}^{2-}/\hbox {sulphate}\). In situ DRIFTS experiments indicated that the formation of sulphate may occur as follows: (a) \(\hbox {H}_{2}\hbox {S}+\hbox {O}_{2}\rightarrow \hbox {S}+\hbox {H}_{2}\hbox {O}\), (b) S+\(\hbox {O}_{2}\rightarrow \hbox {S}\)–O, (c) –COO+\(\hbox {H}_{2}\hbox {S}\rightarrow \)–CH+S–O, (d) C–OH+\(\hbox {H}_{2}\hbox {S}\rightarrow \)–CH+S–O. The in situ DRIFTS experiments also indicated that the C–OH groups, –COO groups and \(\hbox {O}_{2}\) played important roles in the deactivation of the catalyst, which was consistent with the XPS results. Meanwhile, the \(\hbox {SO}_{4}^{2-}/\hbox {sulphate}\) content increased during the reaction, which led to its occupancy of the catalyst’s surface activity sites. Additionally, the alkaline groups and active components were removed, which could also result in the deactivation of the catalysts.

Graphical Abstract

SYNOPSIS The deactivation mechanism of the simultaneous removal of COS and \(\hbox {CS}_{2}\) over a Fe–Cu–Ni/MCSAC catalyst was investigated using SEM/EDS, XPS and in situ DRIFTS methods. In situ DRIFTS experiments indicated that the formation of sulphate may occur as follows: (a) \(\hbox {H}_{2}\hbox {S}+\hbox {O}_{2}\rightarrow \hbox {S}+\hbox {H}_{2}\hbox {O}\), (b) S+\(\hbox {O}_{2}\rightarrow \hbox {S}\)–O, (c) –COO+\(\hbox {H}_{2}\hbox {S}\rightarrow \)–CH+S–O, (d) C–OH+\(\hbox {H}_{2}\hbox {S}\rightarrow \)–CH+S–O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Leman L J, Orgel L E and Ghadiri M R 2006 Amino acid dependent formation of phosphate anhydrides in water mediated by carbonyl sulfide J. Am. Chem. Soc. 128 20

    Article  CAS  Google Scholar 

  2. Sun X, Ning P, Tang X L, Yi H H, Li K, He D, Xu X M, Huang B and Lai R Y 2014 Simultaneous catalytic hydrolysis of carbonyl sulfide and carbon disulfide over \(\text{ Al }_{2}\text{ O }_{3}\)–K/CAC catalyst at low temperature J. Energy Chem. 23 221

    Article  CAS  Google Scholar 

  3. Chowanietz V, Pasel C, Eckardt T, Siegel A and Bathen D 2016 Formation of carbonyl sulfide (COS) on different adsorbents in natural gas treatment plants Oil Gas Eur. Mag. 42 82

    Google Scholar 

  4. Zhao S Z, Yi H H, Tang X L, Gao F Y, Yu Q J, Zhou Y S, Wang J G, Huang Y H and Yang Z Y 2016 Enhancement effects of ultrasound assisted in the synthesis of NiAl hydrotalcite for carbonyl sulfide removal Ultrason. Sonochem. 32 336

    Article  CAS  Google Scholar 

  5. Qiu J, Ning P, Wang X Q, Li K, Liu W, Chen W and Wang L L 2014 Removing carbonyl sulfide with metal-modified activated carbon Front. Env. Sci. Eng. 10 11

    Article  Google Scholar 

  6. Kuznetsov D L, Filatov I E and Uvarin V V 2016 Processes of carbon disulfide degradation under the action of a pulsed corona discharge Tech. Phys. Lett. 42 822

    Article  CAS  Google Scholar 

  7. Yegiazarov Y, Clark J, Potapova L, Radkevich V, Yatsimirsky V and Brunel D 2005 Adsorption-catalytic process for carbon disulfide removal from air Catal. Today 102 242

    Article  Google Scholar 

  8. Huang H M, Young N, Williams B P, Taylor S H and Hutchings G 2006 High temperature COS hydrolysis catalysed by \(\upgamma -\text{ Al }_{2}\text{ O }_{3}\) Catal. Lett. 110 243

    Article  CAS  Google Scholar 

  9. Liu Y C, He H and Ma Q X 2008 Temperature dependence of the heterogeneous reaction of carbonyl sulfide on magnesium oxide J. Phys. Chem. A 112 2820

    Article  CAS  Google Scholar 

  10. Rhodes C, Riddel S A, West J, Williams B P and Hutchings G J 2000 The low-temperature hydrolysis of carbonyl sulfide and carbon disulfide: a review Catal. Today 59 443

    Article  CAS  Google Scholar 

  11. Ning P, Yu L L, Yi H H, Tang X L, Li H, Wang H Y and Yang L N 2010 Effect of Fe/Cu/Ce loading on the coal-based activated carbons for hydrolysis of carbonyl sulfide J. Rare Earth 28 205

    Article  CAS  Google Scholar 

  12. Zhu Y Y, Kolar P, Shah S B, Cheng J J and Lim P K 2016 Avocado seed-derived activated carbon for mitigation of aqueous ammonium Ind. Crop. Prod. 92 34

    Article  CAS  Google Scholar 

  13. He Q, Dai J L, Zhu L, Xiao K J and Yin Y R 2016 Synthesis and lead absorption properties of sintered activated carbon supported zero-valent iron nanoparticle J. Alloy. Compd. 687 326

    Article  CAS  Google Scholar 

  14. Balsamo M, Cimino S, Falco G D, Erto A and Lisi L 2016 ZnO–CuO supported on activated carbon for \(\text{ H }_{2}\text{ S }\) removal at room temperature Chem. Eng. J. 304 399

    Article  CAS  Google Scholar 

  15. Li K, Song X, Ning P, Yi H H, Tang X L and Wang C 2014 Energy utilization of yellow phosphorus tail gas: simultaneous catalytic hydrolysis of carbonyl sulfide and carbon disulfide at low temperature Energy Technol. 3 136

    Article  Google Scholar 

  16. Ning P, Li K, Yi H H, Tang X L, Peng J H, He D, Wang H Y and Zhao S Z 2012 Simultaneous catalytic hydrolysis of carbonyl sulfide and carbon disulfide over modified microwave coal-based active carbon catalysts at low temperature J. Phys. Chem. C 116 17055

    Article  CAS  Google Scholar 

  17. Yi H H, Li K, Tang X L, Ning P, Peng J H, Wang C and He D 2013 Simultaneous catalytic hydrolysis of low concentration of carbonyl sulfide and carbon disulfide by impregnated microwave activated carbon at low temperatures Chem. Eng. J. 230 220

    Article  CAS  Google Scholar 

  18. Li K, Liu G, Gao T Y, Lu F, Tang L H, Liu S J and Ning P 2016 Surface modification of Fe/MCSAC catalysts with coaxial cylinder dielectric barrier discharge plasma for low-temperature catalytic hydrolysis of \(\text{ CS }_{2}\)  Appl. Catal. A 527 171

    Article  CAS  Google Scholar 

  19. Guo H B, Tang L H, Li K, Ning P, Sun X, Liu G, Bao S Y, Zhu T T, Jin X, Duan Z Y and Li Q S 2016 The hydrolysis mechanism and kinetic analysis for COS hydrolysis: A DFT study Russ. J. Phys. Chem. B 10 427

    Article  CAS  Google Scholar 

  20. Yi H H, Zhao S Z, Tang X L, Song C Y, Gao F Y, Zhang B W, Wang Z X and Zuo Y R 2014 Low-temperature hydrolysis of carbon disulfide using the Fe-Cu/AC catalyst modified by non-thermal plasma Fuel 128 268

    Article  CAS  Google Scholar 

  21. Li X H, Ren S J, Wei X G, Zeng Y, Gao G W, Y. Ren, Zhu J, Lau K C and Li W K 2014 Concerted or stepwise mechanism? New insight into the water-mediated neutral hydrolysis of carbonyl sulfide J. Phys. Chem. A 118 3503

    Article  CAS  Google Scholar 

  22. Wang H Y, Yi H H, Tang X L, Yu L L, He D, Zhao S Z and K Li 2013 Reactivation of CoNiAl calcined hydrotalcite-like compounds for hydrolysis of carbonyl sulfide Ind. Eng. Chem. Res. 52 9331

    Article  CAS  Google Scholar 

  23. George Z M 1974 Kinetics of cobalt-molybdate-catalyzed reactions of \(\text{ SO }_{2}\) with \(\text{ H }_{2}\text{ S }\) and COS and the hydrolysis of COS J. Catal. 32 261

    Article  CAS  Google Scholar 

  24. Akimoto M and Lana I G D 1980 Role of reduction sites in vapor-phase hydrolysis of carbonyl sulfide over alumina catalysts J. Catal. 62 84

    Article  CAS  Google Scholar 

  25. Ju S 1998 Hydrolysis of carbonyl sulfide and carbon disulfide over alumina based catalysts I. Study on activities of COS and \(\text{ CS }_{2}\) hydrolysis J. Nat. Gas Chem. 7 16

    Google Scholar 

  26. Hoggan P E, Aboulayt A, Pieplu A, Nortier P and Lavalley J C 1994 Mechanism of COS hydrolysis on alumina J. Catal. 149 300

    Article  CAS  Google Scholar 

  27. Wilson C and Hirst D M 1995 High-level ab initio study of the reaction of OCS with OH radicals J. Chem. Soc. Faraday T. 91 793

    Article  CAS  Google Scholar 

  28. Sakanishi K, Wu Z H, Matsumura A, Saito I, Hanaoka T, Minowa T, Tada M and Iwasaki T 2005 Simultaneous removal of \(\text{ H }_{2}\text{ S }\) and COS using activated carbons and their supported catalysts Catal. Today 104 94

    Article  CAS  Google Scholar 

  29. Aboulayt A, Mauge F, Hoggan P E and Lavalley J C 1996 Combined FTIR, reactivity and quantum chemistry investigation of COS hydrolysis at metal oxide surfaces used to compare hydroxyl group basicity Catal. Lett. 39 213

    Article  CAS  Google Scholar 

  30. Li W, Peng J, Zhang L, Yang K, Xia H, Zhang S and Guo S H 2008 Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 Kw Waste Manage. 29 756

    Article  CAS  Google Scholar 

  31. Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (Boca Raton: CRC Press)

    Book  Google Scholar 

  32. Cottrell T L 1958 The Strengths of Chemical Bonds \(2^{{\rm nd}}\) edn. (London: Butterworths Scientific Publications)

    Google Scholar 

  33. U.S. Dept. of Commerce 1970 National standard reference data series, National Bureau of Standards, Washington.

  34. Benson S W 1965 III-Bond energies J. Chem. Educ. 42 502

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51408282, 21667015), China Scholarship Council (201508530017, 201608530169, 201608740011) and the Analysis and Testing Foundation of Kunming University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Ning.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 1211 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Song, X., Wang, C. et al. Deactivation mechanism of the simultaneous removal of carbonyl sulphide and carbon disulphide over Fe–Cu–Ni/MCSAC catalysts. J Chem Sci 129, 1893–1903 (2017). https://doi.org/10.1007/s12039-017-1397-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-017-1397-9

Keywords

Navigation