Skip to main content
Log in

Hydrothermal synthesis and characterization of two novel tungstovanadophosphate derivatives

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Two novel tungstovanadophosphate derivatives, namely [Fe(phen)3]2[PW VI8 VVV IV5 O42] · H2O (1) and [Fe(phen)3]2[PW9V3O40] (2), were synthesized under hydrothermal conditions, and characterized by elemental analysis, IR, ESR, XPS, TGA, and single-crystal X-ray diffraction analysis. The crystal structure analyses reveal that the ‘mixed-addenda’ Keggin polyoxoanion in 1 is decorated with VO2+ units, such that four V atoms are disordered over eight metal sites; the anion in compound 2 has a typical Keggin structure with three V atoms disordered over 12 metal sites. The two compounds are ionic crystals with slightly different packing modes for the polyoxoanions and [Fe(phen)3]3+ cations. ππ stacking interactions between phen molecules, weak hydrogen bonding interactions between phen ligands and polyoxoanions, and electrostatic forces lead to an extended 3D supramolecular framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Misono M (1987) Catal Rev Sci Eng 29:269

    Article  CAS  Google Scholar 

  2. Bussereau F, Picard M, Malik C, Teze A et al (1988) J Ann Inst Pasteur Vir 32:33

    CAS  Google Scholar 

  3. Ouahab L (1997) Chem Mater 9:1909

    Article  CAS  Google Scholar 

  4. Hill CL (1998) Chem Rev 98:1

    Article  CAS  PubMed  Google Scholar 

  5. Khenkin AM, Neumann R (2002) J Am Chem Soc 124:4198

    Article  CAS  PubMed  Google Scholar 

  6. Kagan CR, Mitzi DB, Dimitrakopoulos CD (1999) Science 286:945

    Article  CAS  PubMed  Google Scholar 

  7. Keggin JF (1933) Nature 131:908

    Article  CAS  Google Scholar 

  8. Baker LCW, Baker VES, Eriks K, Pope MT et al (1966) J Am Chem Soc 88:2329

    Article  CAS  Google Scholar 

  9. Flymn CM, Pope MT (1971) Inorg Chem 10:2745

    Article  Google Scholar 

  10. Chen Y-G, Qu L-Y, Peng J, Yu M (1993) Chem J Chin Univ 14:458

    CAS  Google Scholar 

  11. Chen Y-G, Qu L-Y, Peng J, Yu M (1993) Chin J Struct Chem 12:338

    CAS  Google Scholar 

  12. Luan GY, Li YG, Wang ST, Wang EB (2003) J Chem Soc Dalton Trans 2:233

    Article  Google Scholar 

  13. (a) Luan GY, Li YG, Wang EB (2002) Inorg Chem Commun 5:509; (b) Xu Y, Zhu HG, Cai H, You XZ (1999) Chem Commun 787

  14. Han ZG, Zhao YL, Peng J (2004) J Solid State Chem 177:4325

    Article  CAS  Google Scholar 

  15. Dolbecq A, Cadot E, Eisner DI (1999) Inorg Chem 38:4217

    Article  CAS  Google Scholar 

  16. Khan MI, Chen Q, Zubieta J (1993) Inorg Chem 32:2924

    Article  CAS  Google Scholar 

  17. Luan GY, Li YG, Wang EB (2001) Inorg Chem Commun 4:632

    Article  CAS  Google Scholar 

  18. Müller AZ (1994) Anorg Allg Chem 620:599

    Article  Google Scholar 

  19. Chen Q, Hill CL (1996) Inorg Chem 35:2403

    Article  CAS  PubMed  Google Scholar 

  20. Li FY, Xu L, Wei YG, Wang EB (2005) Inorg Chem Commun 8:263

    Article  CAS  Google Scholar 

  21. Shi ZY, Gu XJ, Peng J, Wang EB (2005) J Mol Struct 737:147

    Article  CAS  Google Scholar 

  22. Luan GY, Li YG, Wang EB et al (2002) J Solid State Chem 165:1

    Article  CAS  Google Scholar 

  23. Li YG, Wang EB, Wang ST (2002) J Mol Struct 611:185

    Article  CAS  Google Scholar 

  24. Xu Y, Zhu DB, Guo ZJ (2001) J Chem Soc Dalton Trans 772

  25. Liu CM, Zhang DQ, Zhu DB (2003) Cryst Growth Des 3:363

    Article  CAS  Google Scholar 

  26. Liu CM, Zhang DQ, Zhu DB (2005) Cryst Growth Des 5:1639

    Article  CAS  Google Scholar 

  27. Yamase T, Suzuki M, Ohtaka K (1997) J Chem Soc Dalton Trans 2463

  28. (a) Shivaiah V, Hajeebu S, Das SK (2002) Inorg Chem Commun 5:996; (b) Khan MI, Cevik S, Hayashi R (1999) J Chem Soc Dalton Trans 1651

  29. Liu YB, Duan LM, Yang XM (2006) J Solid State Chem 179:122

    Article  CAS  Google Scholar 

  30. Xu Y, Nie LB, Zhang GN (2006) Inorg Chem Commun 9:329

    Article  CAS  Google Scholar 

  31. Xu Y, Xu JQ, Yang GY (1998) Polyhedron 17:2441

    Article  CAS  Google Scholar 

  32. (a) Bai YP, Li YG, Wang EB (2005) J Mol Struct 752:54; (b) Shi ZY, Gu XJ, Peng J (2005) J Solid State Chem 178:1988; (c) Yuan M, Li YG, Wang EB (2003) Inorg Chem 42:3670

  33. Kitamuura A, Ozeki T, Yagasaki A (1997) Inorg Chem 36:4275

    Article  Google Scholar 

  34. (a) Sheldrick GM (1997) SHELXS 97, Program for crystal structure solution. University of Göttingen; (b) Sheldrick GM (1997) SHELXL 97, Program for crystal structure refinement. University of Göttingen

  35. Strong JB, Haggerty BS, Rheingold AL (1997) Chem Commun 1137

  36. Yuan M, Li YG, Wang EB et al (2002) J Chem Soc Dalton Trans 2916

  37. Brown ID (1981) In: O’Keefe M, Navrotsky A (eds) Structure and bonding in crystals, vol 2. Academic Press, New York, pp 1–30

    Chapter  Google Scholar 

  38. Wang HD, Chen Y, Li YT et al (2004) Thermochim Acta 142:97

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Guang Chen.

Electronic supplementary material

These files are unfortunately not in the Publisher's archive anymore:

  • ESM 1 (CIF 33 kb)

  • ESM 2 (CIF 30 kb)

ESM 3 (DOC 184 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, FX., Chen, YG., Shi, DM. et al. Hydrothermal synthesis and characterization of two novel tungstovanadophosphate derivatives. Transition Met Chem 33, 697–703 (2008). https://doi.org/10.1007/s11243-008-9099-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-008-9099-2

Keywords

Navigation