Skip to main content
Log in

Synthesis of new macrocyclic rhodium(III) compounds and their utility as catalysts for the oxidation of ascorbic acid

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Ten new macrocyclic Schiff base Rh(III) compounds were synthesized by treating the corresponding macrocycles with rhodium chloride in 1:1 ratio. The resulting compounds were characterized by elemental, IR, 1H NMR, 13C NMR, mass, electronic spectral analysis, and their structures have been proposed. These compounds were utilized as catalysts in the development of an efficient and environmentally friendly catalytic method for the oxidation of ascorbic acid (AA) to dehydroascorbic acid (DHAA). DHAA was determined spectrophotometrically by treating with orthophenylenediamine (OPDA) and the yields were found to be in the range 72–84%. The catalytic oxidation and spectrophotometric determination methods were found to be faster and more accurate than those reported previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Singh DP, Kumar R, Tyagi P (2006) Transition Met Chem 31:970

    Article  CAS  Google Scholar 

  2. Halma M, Bail A, Wypych F, Nakagaki S (2006) J Mol Cat A Chem 243:44

    Article  CAS  Google Scholar 

  3. Burrows AD (2002) Sci Prog 85:199

    CAS  Google Scholar 

  4. Horn R, Williams KA, Degenstein NJ, Schmidt LD (2006) J Cat 242:92

    Article  CAS  Google Scholar 

  5. Hetterscheid DGH, Bruin B (2006) J Mol Cat A Chem 251:291

    Article  CAS  Google Scholar 

  6. Eriksson S, Nilsson M, Boutonnet M, Jaras S (2005) Catal Today 100:447

    Article  CAS  Google Scholar 

  7. Filho OF, Vieira IC (2000) J Braz Chem Soc 11:412

    Google Scholar 

  8. Strizhak PE, Basylchuk AB, Demjanchyk I, Fecher F, Schneiderb FW, Munsterb AF (2000) Chem Phys 2:4721

    Article  CAS  Google Scholar 

  9. Lambeir AM, Dunford HB, Pickard MA (1987) Euro J Biochem 163:123

    Article  CAS  Google Scholar 

  10. Noroozifar M, Motlagh MK, Farahmanda AR (2004) Acta Chim Slov 51:717

    CAS  Google Scholar 

  11. Noroozifar M, Motlagh MK (2003) Turk J Chem 27:717

    CAS  Google Scholar 

  12. Fresenius GS (1947) J Anal Chem 265:5

    Google Scholar 

  13. Deutsch JC (1998) Anal Biochem 255:1

    Article  CAS  Google Scholar 

  14. Morgan JA, Lu Z, Clark DS (2002) J Mol Cat B 18:147

    Article  CAS  Google Scholar 

  15. Hulce M, Marks DW (2001) J Chem Edn 78:66

    Article  CAS  Google Scholar 

  16. Ashok M, Ravinder V, Prasad AVSS (2007) Transition Met Chem 32:23

    Article  CAS  Google Scholar 

  17. Schumann H, Ravinder V, Meltser L, Baidossai W, Sasson Y, Blum J (1997) J Mol Cat A Chem 118:55

    Article  CAS  Google Scholar 

  18. Muralidhar Reddy P, Prasad AVSS, Ravinder V (2007) Transition Met Chem 32:507

    Article  CAS  Google Scholar 

  19. Esteban MR, Ho CN (1997) Microchem J 56:122

    Article  CAS  Google Scholar 

  20. Bharati N, Sharma SS, Naqvi F, Azam A (2003) Bioinorg Med Chem 11:2923

    Article  CAS  Google Scholar 

  21. Okawa H, Nishio J, Ohoba M, Tadokoro M, Matumastsumoto N, Koikawa M, Kaida S, Fenton DE (1993) Inorg Chem 32:2949

    Article  CAS  Google Scholar 

  22. Shakir M, Nasman OSM, Varkey SP (1996) Polyhedron 15:309

    Article  CAS  Google Scholar 

  23. Hamciuc C, Hamciuc E, Bruma M, Klapper M, Pakula T (2001) Polym Bull 47:1

    Article  CAS  Google Scholar 

  24. Shakir M, Varkey SP, Hammed SP (1994) Polyhedron 30:1355

    Article  Google Scholar 

  25. Mishra L, Upadhyay KK (1992) Ind J Chem 31A:169

    Google Scholar 

  26. Keypour H, Salehzadeh S, Pritchard RG, Parish RV (2001) Molecules 6:909

    Article  CAS  Google Scholar 

  27. Shakir M, Chishti HTN, Chingsubam P (2006) Spectrochim Acta A 64:512

    Article  CAS  Google Scholar 

  28. Armstrong LG, Lindoy LF (1975) Inorg Chem 14:1322

    Article  CAS  Google Scholar 

  29. Shakir M, Varkey SP, Kumar D (1994) Synth React Inorg Org Chem 24:941

    Article  CAS  Google Scholar 

  30. Tzschach A, Jurkschat K, Zschunke A, Mugge C, Altenbrunn B, Leopardi CP, Germain G, Declercq JP, Meerssche MV (1985) J Chem Crystallogr 15:423

    CAS  Google Scholar 

  31. Chohan ZH, Praveen M (2001) Appl Organomet Chem 15:617

    Article  CAS  Google Scholar 

  32. Lever ABP (1984) Inorganic electronic spectroscopy, 2nd edn. Elsevier, New York

    Google Scholar 

  33. Konig E (1971) Struct Bonding 9:175

    Google Scholar 

  34. Dunn T (1959) J Chem Soc 623

  35. Hafkenscheid TL, Oosten JAV (2002) Anal Bioanal Chem 372:658

    Article  CAS  Google Scholar 

  36. Noroozifar M, Motlagh MK, Farahmanda AR (2004) Acta Chim Slov 51:717

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadde Ravinder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, P.M., Prasad, A.V.S.S., Reddy, C.K. et al. Synthesis of new macrocyclic rhodium(III) compounds and their utility as catalysts for the oxidation of ascorbic acid. Transition Met Chem 33, 251–258 (2008). https://doi.org/10.1007/s11243-007-9037-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-007-9037-8

Keywords

Navigation