Skip to main content
Log in

Synthesis, DNA binding and oxidative cleavage studies of an asymmetric tridentate copper(II) complex

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

An asymmetric tridentate CuII complex, [Cu(ptp)Cl2] (ptp = 3-(1,10-phenanthrolin-2-yl)-as-triazino[5,6-f]-phenanthrene), has been synthesized and characterized by elemental analysis, FAB-MS, i.r. and u.v.–vis. spectra. The DNA binding behavior of the complex has been examined by fluorescence quenching, cyclic voltammetric and viscosity measurements. The results suggest that [Cu(ptp)Cl2] binds to DNA in the intercalative mode. This complex is also found to produce cleavage of pBR 322 DNA in the presence of reducing agents such as ascorbate/H2O2, and the hydroxyl radical (OH) is suggested to be the reactive species responsible for the cleavage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.S. Sigman A. Mazumder D.M. Perrin (1993) Chem. Rev. 93 2295 Occurrence Handle10.1021/cr00022a011 Occurrence Handle1:CAS:528:DyaK3sXlvFyisrc%3D

    Article  CAS  Google Scholar 

  2. A. Sigel and H. Sigel (eds), Metal Ions in Biological Systems, Vol. 33, Marcel Dekker, New York, 1996

  3. M. Gielen and E.R.T. Tiekink (eds), Metallotherapeutic Drugs and Metal-Based Diagnostic Agents: The Use of Metals in Medicine, John Wiley & Sons, 2005

  4. L.-N. Ji X.-H. Zou J.-G. Liu (2001) Coord. Chem. Rev. 216–217 513 Occurrence Handle10.1016/S0010-8545(01)00338-1

    Article  Google Scholar 

  5. J.A. Cowan (2001) Curr. Opin. Chem. Biol. 5 634 Occurrence Handle10.1016/S1367-5931(01)00259-9 Occurrence Handle1:CAS:528:DC%2BD3MXovVCnsbw%3D

    Article  CAS  Google Scholar 

  6. H. Chao L.-N. Ji (2005) Bioinorg. Chem. Appl. 3 15 Occurrence Handle1:CAS:528:DC%2BD2MXksFars78%3D

    CAS  Google Scholar 

  7. D.S. Sigman D.R. Graham V.D. Aurora A.M. Stern (1979) J. Biol. Chem. 254 12269 Occurrence Handle1:CAS:528:DyaL3cXitlWg

    CAS  Google Scholar 

  8. S. Dhar D. Senapati P.K. Das P. Chattopadhyay M. Nethaji A.R. Chakravarty (2003) J. Am. Chem. Soc. 125 12118 Occurrence Handle10.1021/ja036681q Occurrence Handle1:CAS:528:DC%2BD3sXnt1Klu70%3D

    Article  CAS  Google Scholar 

  9. A.M. Thomas M. Nethaji S. Mahadevan A.R. Chakravarty (2003) J. Inorg. Biochem. 94 171 Occurrence Handle10.1016/S0162-0134(02)00613-X Occurrence Handle1:CAS:528:DC%2BD3sXhs1Klsbw%3D

    Article  CAS  Google Scholar 

  10. S. Dhar A.R. Chakravarty (2005) Inorg. Chem. 44 2582 Occurrence Handle10.1021/ic050085a Occurrence Handle1:CAS:528:DC%2BD2MXisFajtr4%3D

    Article  CAS  Google Scholar 

  11. A. García-Raso J.J. Fiol B. Adrover V. Moreno I. Mata E. Espinosa E. Molins (2003) J. Inorg. Biochem. 95 77 Occurrence Handle10.1016/S0162-0134(03)00121-1 Occurrence Handle1:CAS:528:DC%2BD3sXjvV2ntrk%3D

    Article  CAS  Google Scholar 

  12. J.-Z. Wu H. Li J.-G. Zhang J.-H. Xu (2002) Inorg. Chem. Commun. 5 71 Occurrence Handle10.1016/S1387-7003(01)00348-3 Occurrence Handle1:CAS:528:DC%2BD38XktlyisQ%3D%3D

    Article  CAS  Google Scholar 

  13. C. Hemmert M. Pitié M. Renz H. Gornitzka S. Soulet B. Meunier (2001) J. Biol. Inorg. Chem. 6 14 Occurrence Handle10.1007/s007750000177 Occurrence Handle1:CAS:528:DC%2BD3MXhvVegtLY%3D

    Article  CAS  Google Scholar 

  14. M. Navarro E.J. Cisneros-Fajardo A. Sierralta M. Fernández-Mestre P. Silva D. Arrieche E. Marchán (2003) J. Biol. Inorg. Chem. 8 401 Occurrence Handle1:CAS:528:DC%2BD3sXjvFCjsbw%3D

    CAS  Google Scholar 

  15. A.K. Patra, S. Dhar, M. Nethaji and A.R. Chakravarty, Chem. Commun., 1563 (2003)

  16. M. Pitie, C. Boldron, H. Gornitzka, C. Hermmert, B. Donnadieu and B. Meunier, Eur. J. Inorg. Chem., 528 (2003)

  17. V.G. Vaidyanathan B.U. Nair (2003) J. Inorg. Biochem. 93 271 Occurrence Handle10.1016/S0162-0134(02)00593-7 Occurrence Handle1:CAS:528:DC%2BD3sXpsFOhtQ%3D%3D

    Article  CAS  Google Scholar 

  18. X.-L. Wang H. Chao H. Li X.-L. Hong L.-N. Ji X.-Y. Li (2004) J. Inorg. Biochem. 98 423 Occurrence Handle10.1016/j.jinorgbio.2003.12.006 Occurrence Handle1:CAS:528:DC%2BD2cXhsV2ktbY%3D

    Article  CAS  Google Scholar 

  19. J.J. Marmur (1961) J. Mol. Biol. 3 208 Occurrence Handle1:CAS:528:DyaF3MXosl2kuw%3D%3D Occurrence Handle10.1016/S0022-2836(61)80047-8

    Article  CAS  Google Scholar 

  20. H. Chao, G. Yang, G.-Q. Xue, H. Li, H. Zhang, I.D. Williams, L.-N. Ji, X.-M. Chen and X.-Y. Li, J. Chem. Soc., Dalton Trans., 1326 (2001)

  21. M.F. Reichmann S.A. Rice C.A. Thomas P. Doty (1954) J. Am. Chem. Soc. 76 3047 Occurrence Handle10.1021/ja01640a067 Occurrence Handle1:CAS:528:DyaG2cXmtVKmsg%3D%3D

    Article  CAS  Google Scholar 

  22. J.B. Chaires N. Dattagupta D.M. Crothers (1982) Biochemistry 21 3933 Occurrence Handle10.1021/bi00260a005 Occurrence Handle1:CAS:528:DyaL38Xks1Kjtbs%3D

    Article  CAS  Google Scholar 

  23. G. Cohen H. Eisenberg (1969) Biopolymers 8 45 Occurrence Handle10.1002/bip.1969.360080105 Occurrence Handle1:CAS:528:DyaF1MXltV2jtbY%3D

    Article  CAS  Google Scholar 

  24. A. Wolf G.H. Shimer SuffixJr. T. Meehan (1987) Biochemistry 26 392 Occurrence Handle10.1021/bi00387a010

    Article  Google Scholar 

  25. B.C. Baguley M. Lebret (1984) Biochemistry 23 937 Occurrence Handle10.1021/bi00300a022 Occurrence Handle1:CAS:528:DyaL2cXotFelsA%3D%3D

    Article  CAS  Google Scholar 

  26. B.C. Baguley W.A. Denny G.J. Atwell B.F. Cain (1981) J. Med. Chem. 24 170 Occurrence Handle10.1021/jm00134a009 Occurrence Handle1:CAS:528:DyaL3MXlsl2msw%3D%3D

    Article  CAS  Google Scholar 

  27. D.L. Boger S.M. Sakya (1992) J. Org. Chem. 57 1277 Occurrence Handle10.1021/jo00030a042 Occurrence Handle1:CAS:528:DyaK38Xht1Snu74%3D

    Article  CAS  Google Scholar 

  28. D.L. Boger B.E. Fink S.R. Brunette W.C. Tse M.P. Hedrick (2001) J. Am. Chem. Soc. 123 5878 Occurrence Handle10.1021/ja010041a Occurrence Handle1:CAS:528:DC%2BD3MXjvFOhtLg%3D

    Article  CAS  Google Scholar 

  29. S. Satyanarayana J.C. Dabroniak J.B. Chaires (1992) Biochemistry 31 9319 Occurrence Handle10.1021/bi00154a001 Occurrence Handle1:CAS:528:DyaK38Xls1Kjtbc%3D

    Article  CAS  Google Scholar 

  30. S. Satyanaryana J.C. Daborusak J.B. Chaires (1993) Biochemistry 32 2573 Occurrence Handle10.1021/bi00061a015

    Article  Google Scholar 

  31. S.H. Chiou, N. Ohtsu and K.G. Bensch, in Biological and Inorganic Copper Chemistry, D. Karlin and J. Zubieta (Eds.), Adenine Press, New York, 1985, p. 119

  32. C.A. Detmer SuffixIII F.V. Pamatong J.R. Bocarsly (1996) Inorg. Chem. 35 6292 Occurrence Handle10.1021/ic960519p Occurrence Handle1:CAS:528:DyaK28XlvVSlsbs%3D

    Article  CAS  Google Scholar 

  33. C.A. Detmer SuffixIII F.V. Pamatong J.R. Bocarsly (1997) Inorg. Chem. 36 3676 Occurrence Handle10.1021/ic970199p Occurrence Handle1:CAS:528:DyaK2sXkslKhsb8%3D

    Article  CAS  Google Scholar 

  34. D.S. Sigman (1986) Acc. Chem. Res. 19 180 Occurrence Handle10.1021/ar00126a004 Occurrence Handle1:CAS:528:DyaL28XksFKltLo%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Chao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, XL., Chao, H., Peng, B. et al. Synthesis, DNA binding and oxidative cleavage studies of an asymmetric tridentate copper(II) complex. Transition Met Chem 32, 125–130 (2007). https://doi.org/10.1007/s11243-006-0133-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-006-0133-y

Keywords

Navigation