Skip to main content
Log in

Cu(II) complexes of 2-indole thiocarbohydrazones: synthesis, characterization and DNA cleavage studies

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Two Schiff base ligands FT1 and FT2 and their Cu(II) complexes were synthesized and characterized by 1H NMR, ESI-MS, IR, UV-Visible, Fluorescence spectroscopy, EPR and single-crystal X-ray diffraction studies. FT1 crystallizes in the triclinic system while FT2 in the orthorhombic. The DNA cleavage activity of Cu(II) complexes was studied using plasmid pBR322 DNA by gel electrophoresis. All compounds cleave DNA on photoirradiation by oxidative mechanism.

Graphic abstract

Two Schiff base ligands FT1 and FT2 and their Cu(II) complexes were synthesized and characterized by 1H NMR, ESI-MS, IR, UV-Visible, Fluorescence spectroscopy, EPR and single-crystal X-ray diffraction studies. Both the Cu(II) complexes of indole thiocarbohydrazones are shown to cleave plasmid pBR322 DNA by oxidative mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bose P and Ghosh P 2010 Visible and near-infrared sensing of fluoride by indole conjugated Urea/thiourea ligands Chem. Commun. 46 2962

    Article  CAS  Google Scholar 

  2. Yadav B P, Ahmad I and Thakur M 2016 Synthesis of some novel indole derivatives as potential antibacterial, antifungal and antimalarial agents IOSR J. Pharm. 6 27

    CAS  Google Scholar 

  3. Kaushik N K, Kaushik N, Attri P, Kumar N, Kim C H, Verma A K and Choi E H 2013 Biomedical Importance of Indoles Molecules 18 6620

    Article  CAS  Google Scholar 

  4. Tisato F, Marzano C, Porchia M, Pellai M and Santini C 2010 Copper in diseases and treatments, and copper-based anticancer strategies Med. Res. Rev. 30 708

    CAS  PubMed  Google Scholar 

  5. Heque R A and Salam M A 2016 Synthesis, spectroscopic properties and biological activity of new mono organotin(IV) complexes with 5-bromo-2-hydroxybenzaldehyde-4,4-dimethylthiosemicarbazone Cogent Chem. 1 282

    Google Scholar 

  6. Rapheal P F, Manoj E and Kurup M R P 2007 Copper(II) complexes of N(4)-substituted thiosemicarbazones derived from pyridine-2-carbaldehyde: Crystal structure of a binuclear complex Polyhedron 26 818

    Article  CAS  Google Scholar 

  7. Beckford F A, Shaloski J M, Leblanc G, Thessing J, Lewis-Alleyne L C, Holder A A, et al. 2009 Microwave synthesis of mixed ligand diimine–thiosemicarbazone complexes of ruthenium(II): biophysical reactivity and cytotoxicity Dalton Trans. 48 10757

    Article  Google Scholar 

  8. Bhat M A, Al-Omar M A, Raish M, Ansari M A, Abuelizz H A, Bakheit A H and Naglah A M 2018 Indole Derivatives as Cyclooxygenase Inhibitors: Synthesis, Biological Evaluation and Docking Studies Molecules 23 1250

    Article  Google Scholar 

  9. Cheng H, Ying D C, Jie F C, Jiang L Y and Jin M Q 2000 Self-Assembly, Spectroscopic and Electrochemical Studies of Nickel(II)-4,8-Diazaundecanediamide Complex Dalton Trans. 9 1207

    Article  Google Scholar 

  10. El-Sawaf A K, Nassar A F and El-Samanody S 2014 Synthesis, magnetic, spectral and biological studies of copper(II) complexes of 4-Benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one N(4)-substituted thiosemi-carbazones Sci. J. Chem. 3 17

    Article  Google Scholar 

  11. Sthisha M P, Shetti U N, Revankar V K and Pai K S R 2008 Some Novel Schiff Bases from Pyruvic Acid with Amines Containing N & S Donor Atoms: Synthesis, Spectral Studies and X-Ray Crystal Structures Eur. J. Med. Chem. 43 2338

    Article  Google Scholar 

  12. Chattopadhyay S K and Mak T W 2000 Study of Cu2+ mediated oxidation of thiosemicarbazide, thiocarbohydrazide and thiourea Inorg. Chem. Commun. 3 111

    Article  CAS  Google Scholar 

  13. Bacchi A, Bonini A and Carcelli M 1996 Chelating behaviour of methyl 2-pyridyl ketone carbono- and thiocarbonohydrazones in copper(II) and zinc(II) complexes Dalton Trans. 35 185

    Google Scholar 

  14. Zhang N, Tai Y, Li M, Ma P, Zhao J and Niu J 2014 Main group bismuth(iii), gallium(III) and diorganotin(IV) complexes derived from bis(2-acetylpyrazine)thiocarbonohydrazone: synthesis, crystal structures and biological evaluation Dalton Trans. 43 5182

    Article  CAS  Google Scholar 

  15. Chitrapriya N, Shin J H, Hwang I H, Kim Y, Kim C and Kim S K 2015 Synthesis, DNA binding profile and DNA cleavage pathway of divalent metal complexes RSC Adv. 5 68067

    Article  CAS  Google Scholar 

  16. Mathur N and Bargotya S 2016 DNA – Binding and Cleavage Studies of Macrocyclic Metal Complexes Containing Heteroatomic Ligands Chem. Sci. Trans. 5 117

    CAS  Google Scholar 

  17. Viqueira J, Duran M L, Jose A, Vazquez G, Castro J, P-Iglesias C, et al. 2018 Modulating the DNA cleavage ability of copper(II) Schiff bases through ternary complex formation New J. Chem. 42 15170

    CAS  Google Scholar 

  18. Jawoor S S, Patil S A and Toragalmath S S 2018 Synthesis and characterization of heteroleptic Schiff base transition metal complexes: a study of anticancer, antimicrobial, DNA cleavage and anti-TB activity J. Coord. Chem. 71 271

    Article  CAS  Google Scholar 

  19. Hossain M S, Roy P K, Zakaria C M and Zahan M K E 2018 Selected Schiff base coordination complexes and their microbial application: A review Int. J. Chem. Stud. 6 19

    CAS  Google Scholar 

  20. Jia S, Wang R, Wu K, Jiang H and Du Z 2019 Elucidation of the Mechanism of Action for Metal Based Anticancer Drugs by Mass Spectrometry-Based Quantitative Proteomics Molecules 24 581

    Article  Google Scholar 

  21. Sheldrick G M 2015 SHELXT – Integrated space-group and crystal-structure determination Acta Cryst. 71 3

    Google Scholar 

  22. Clegg W 2003 Some guidelines for publishing SHELXL-generated CIF results in Acta Cryst. 59 2

    Google Scholar 

  23. Farrugia L J 1997 ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI) J. Appl. Cryst. 30 565

    Article  CAS  Google Scholar 

  24. Macrae C F, Edgington P R, McCabe P, Pidcock E, Shields G P, Taylor R, et al. 2006 Mercury: visualization and analysis of crystal structures J. Appl. Cryst. 39 453

    Article  CAS  Google Scholar 

  25. Spek A L 2003 Single-crystal structure validation with the program PLATON J. Appl. Cryst. 36 7

    Article  CAS  Google Scholar 

  26. Xiang D, Zhang R, Liang Y, Pan W, Huang J and Dong D 2007 Vilsmeier−Haack Reactions of 2-Arylamino-3-acetyl-5,6-dihydro-4H-pyrans toward the Synthesis of Highly Substituted Pyridin-2(1H)-ones J. Org. Chem. 72 8593

    Article  CAS  Google Scholar 

  27. Bhat S S, Kumbhar A A, Heptullah H, Khan A A, Gobre V V, Gejji S P and Puranik V G 2011 Synthesis, electronic structure, DNA and protein binding, DNA cleavage, and anticancer activity of fluorophore-labeled copper(II) complexes Inorg. Chem. 50 545

    Article  CAS  Google Scholar 

  28. Ingle S A, Kate A N, Kumbhar A A, Khan A A, Rao S S and Gejji S P 2015 Synthesis and biological evaluation of copper(II) pyrenethiosemicarbazone RSC Adv. 5 47476

    Article  CAS  Google Scholar 

  29. Holland J P, Fisher V, Hickin J A and Peach J M 2010 Synthesis and Biological Evaluation of Copper(II) Pyrenethiosemicarbazone Eur. J. Inorg. Chem. 9 48

    Article  Google Scholar 

  30. Warren L E, Horner S M and Hatfield W E 1972 Chemistry of α-diketone-bis(thiosemicarbazone)copper(II) complexes J. Am. Chem. Soc. 94 6392

    Article  CAS  Google Scholar 

  31. Xie D, Kim S, Kohli V, Banerjee A, Yu M, Enriquez J S, et al. 2017 Hypoxia-Responsive 19F MRI Probes with Improved Redox Properties and Biocompatibility Inorg. Chem. 56 6429

    Article  CAS  Google Scholar 

  32. Raman N, Johnson R S and Sakthivel A 2007 Synthesis, spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies J. Chem. Sci. 119 303

    Article  CAS  Google Scholar 

  33. Raman N and Johnson R S 2007 DNA cleavage, structural elucidation and anti-microbial studies of three novel mixed ligand Schiff base complexes of copper(II) J. Serb. Chem. Soc. 72 983

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support to SSP from Dr. Babasaheb Ambedkar National Research Fellowships (BANRF), Maharashtra, India, and Savitribai Phule Pune University (SPPU) is gratefully acknowledged. The Central Instrumentation Facility (CIF) of Savitribai Phule Pune University is acknowledged for single-crystal X-ray structures and ESI HR-MS. We also acknowledge the Sophisticated Analytical Instrumentation Facility (SAIF) at the Indian Institute of Technology Bombay, Mumbai for EPR measurements. Kind assistance in magnetic susceptibility measurements by Prof. Jayesh Gujarathi, Pratap College, Amalner is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupa A Kumbhar.

Additional information

Special Issue on Beyond Classical Chemistry

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1253 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, S., Amate, A., Chakravarty, D. et al. Cu(II) complexes of 2-indole thiocarbohydrazones: synthesis, characterization and DNA cleavage studies. J Chem Sci 133, 107 (2021). https://doi.org/10.1007/s12039-021-01962-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-021-01962-x

Keywords

Navigation