Skip to main content
Log in

Template synthesis, spectroscopic studies and biological screening of macrocyclic complexes derived from thiocarbohydrazide and benzil

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A novel series of complexes of the type [M(TML)X2]; where TML is a tetradentate macrocyclic ligand; M = Co(II), Ni(II), Cu(II) or Zn(II); X = Cl, CH3COO or NO 3 have been synthesized by template condensation of benzil and thiocarbohydrazide in the presence of divalent metal salts in methanolic medium. The complexes have been characterized with the help of elemental analyses, conductance measurements, molecular weight determination, magnetic measurements, electronic, NMR, infrared and far infrared spectral studies. Electronic spectra along with magnetic moments suggest the six coordinate octahedral geometry for these complexes. The low value of molar conductance indicates them to be non-electrolytes. The biological activities of metal complexes have been tested in vitro against a number of pathogenic bacteria to assess their inhibiting potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chandra, R. Gupta, N. Gupta and S. S. Bawa, Transition Met. Chem., 31, 147 (2006); L.F.Lindoy, “The Chemistry of Macrocyclic Ligand Complexes”, Cambridge University Press, Cambridge (1989)

  2. A.K. Singh R. Singh P. Saxena (2004) Transition Met. Chem. 29 867 Occurrence Handle1:CAS:528:DC%2BD2MXhtVSrtb0%3D Occurrence Handle10.1007/s11243-004-1732-0

    Article  CAS  Google Scholar 

  3. W. Ma Y. Tian S. Zhang J. Wu (2006) Transition Met. Chem. 31 97 Occurrence Handle1:CAS:528:DC%2BD28Xmt1Wrtw%3D%3D Occurrence Handle10.1007/s11243-005-6336-9

    Article  CAS  Google Scholar 

  4. M. Rosignoli, P.V. Bernhardt, G.A. Lawrence and M. Maeder, J. Chem. Soc. Dalton Trans., 323 (1997).

  5. J.G. Muller, X. Chen, A.C. Dadiz, S.E. Rokita and C. J. Burrows, Binny. Pure Appl. Chem. 65, 545.

  6. J. Liu T.B. Lu H. Deng L.N. Ji L.H. Qu H. Zhou (2003) Transition Met. Chem. 28 116 Occurrence Handle1:CAS:528:DC%2BD3sXhsFGhs7s%3D Occurrence Handle10.1023/A:1022543601034

    Article  CAS  Google Scholar 

  7. K. Kumar M.F. Tweedle (1993) Pure and Appl. Chem. 65 515 Occurrence Handle1:CAS:528:DyaK3sXktlChu70%3D

    CAS  Google Scholar 

  8. A.D. Watson and S. M. Rockladge, in C.B. Higgins (ed.) Magnetic Resonance Imaging of the Body, Raven Press, New York (1992).

  9. A. Bianchi L. Calabi F. Corana S. Fontana P. losi A. Maiocchi L. Paleari B. Valtancoli (2000) Coord. Chem. Rev. 204 309 Occurrence Handle1:CAS:528:DC%2BD3cXltlSjtbc%3D Occurrence Handle10.1016/S0010-8545(99)00237-4

    Article  CAS  Google Scholar 

  10. C. Kosmos D. Snook C.S. Gooden N.S. Courtenay-Luck M.J. Mc Call C.F. Meares A.A. Epenetos (1992) Cancer Research 52 904

    Google Scholar 

  11. J. Seto S. Tamura N. Asai Y. N.Kishii. Kijima N. Matsuzawa (1996) Pure and Appl. Chem. 68 1429 Occurrence Handle1:CAS:528:DyaK28XkvValurY%3D

    CAS  Google Scholar 

  12. W. Dong R. Yang L. Yan (2001) Indian J. Chem. 40A 202 Occurrence Handle1:CAS:528:DC%2BD3MXisFams7s%3D

    CAS  Google Scholar 

  13. G. Kim D. Park Y. Tak (2000) Catalysis Lett. 65 127 Occurrence Handle1:CAS:528:DC%2BD3cXisFWgsbg%3D Occurrence Handle10.1023/A:1019040532103

    Article  CAS  Google Scholar 

  14. T.A. Khan M.A. Rather N. Jahan S.P. Varkey M. Shakir (1998) Transition Met. Chem. 23 283 Occurrence Handle1:CAS:528:DyaK1cXjvFWrs7w%3D Occurrence Handle10.1023/A:1015708800588

    Article  CAS  Google Scholar 

  15. A.K. Singh A. Panwar R. Singh S. Beniwal (2003) Transition Met. Chem. 28 160 Occurrence Handle1:CAS:528:DC%2BD3sXitl2ju7c%3D Occurrence Handle10.1023/A:1022916620211

    Article  CAS  Google Scholar 

  16. S. Sri Nivasan P. Athappan (2001) Transition Met. Chem. 26 588 Occurrence Handle1:CAS:528:DC%2BD3MXlsVemtbc%3D Occurrence Handle10.1023/A:1011007429295

    Article  CAS  Google Scholar 

  17. Q. Zeng J. Sun S. Gou K. Zhou J. Fang H. Chen (1998) Transition Met. Chem. 23 371 Occurrence Handle1:CAS:528:DyaK1cXms1Shtbs%3D Occurrence Handle10.1023/A:1006994300484

    Article  CAS  Google Scholar 

  18. A.K. Mohamed K.S. Islam S.S. Hasan M. Shakir (1999) Transition Met. Chem. 24 198 Occurrence Handle1:CAS:528:DyaK1MXjsFais7s%3D Occurrence Handle10.1023/A:1006903000739

    Article  CAS  Google Scholar 

  19. L.K. Gupta S. Chandra (2006) Transition Met. Chem. 31 368 Occurrence Handle1:CAS:528:DC%2BD28XjtFOrtb4%3D Occurrence Handle10.1007/s11243-005-0002-0

    Article  CAS  Google Scholar 

  20. C. Lodeiro R. Basitida E. Bertolo A. Macias R. Rodriguez (2003) Transition Met. Chem. 28 388 Occurrence Handle1:CAS:528:DC%2BD3sXjsVyhs74%3D Occurrence Handle10.1023/A:1023672629805

    Article  CAS  Google Scholar 

  21. O.V. Mikhailov (2004) Transition Met. Chem. 29 732 Occurrence Handle1:CAS:528:DC%2BD2cXhtVWjtL3F Occurrence Handle10.1007/s11243-004-2506-4

    Article  CAS  Google Scholar 

  22. K. Nakamoto (1997) Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, 5th Wiley New York

    Google Scholar 

  23. S. Chandra Sangeetika S. Thakur (2004) Transition Met. Chem. 29 925 Occurrence Handle1:CAS:528:DC%2BD2MXhtVSruro%3D Occurrence Handle10.1007/s11243-004-3224-7

    Article  CAS  Google Scholar 

  24. M.S. Niasari A. Amiri (2006) Transition Met. Chem. 31 157 Occurrence Handle10.1007/s11243-005-6342-y

    Article  Google Scholar 

  25. T.A. Khan M. Shagufta (1999) Transition Met. Chem. 24 669 Occurrence Handle1:CAS:528:DyaK1MXns12jt7Y%3D Occurrence Handle10.1023/A:1006991215526

    Article  CAS  Google Scholar 

  26. A.D. Naik S.M. Annigeri U.B. Gangadharmath V.K. Revankar V.B. Mahale (2002) J. Inclusion Phenom. Macrocyclic Chem. 43 291 Occurrence Handle1:CAS:528:DC%2BD3sXksVOntg%3D%3D Occurrence Handle10.1023/A:1021289104845

    Article  CAS  Google Scholar 

  27. M. Shakir K.S. Islam A.K. Mohamed M. Shagufta S.S. Hasan (1999) Transition Met. Chem. 24 577 Occurrence Handle1:CAS:528:DyaK1MXmvVCrs7Y%3D Occurrence Handle10.1023/A:1006900222831

    Article  CAS  Google Scholar 

  28. F.M.A.M. Aqra (1999) Transition Met. Chem. 24 337 Occurrence Handle1:CAS:528:DyaK1MXksVSrs7s%3D Occurrence Handle10.1023/A:1006962812246

    Article  CAS  Google Scholar 

  29. S. Chandra R. Kumar (2004) Transition Met. Chem. 29 269 Occurrence Handle1:CAS:528:DC%2BD2cXitFygsbw%3D Occurrence Handle10.1023/B:TMCH.0000020359.84853.72

    Article  CAS  Google Scholar 

  30. V.B. Rana D.P. Singh P. Singh M.P. Teotia (1982) Transition Met. Chem. 7 174 Occurrence Handle1:CAS:528:DyaL38XkvVCjurk%3D Occurrence Handle10.1007/BF01035836

    Article  CAS  Google Scholar 

  31. V.B. Rana, D.P. Singh, P. Singh and M.P. Teotia, Transition Met. Chem., 6, 136 (1981) Polyhedron, 1, 377 (1982)

  32. A.B.P. Lever (1968) Inorganic Electronic Spectroscopy Elsevier Amsterdam

    Google Scholar 

  33. A.B.P. Lever E. Mantovani (1971) Inorg. Chem. 10 40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharam P. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, D.P., Kumar, R. & Tyagi, P. Template synthesis, spectroscopic studies and biological screening of macrocyclic complexes derived from thiocarbohydrazide and benzil. Transition Met Chem 31, 970–973 (2006). https://doi.org/10.1007/s11243-006-0096-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-006-0096-z

Keywords

Navigation