Skip to main content
Log in

Study on the Interactions of Ruthenium(III), Rhodium(III) and Palladium(II) Ions with DNA

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Fluorescence, absorption and circular dichroism spectra have been used in the interactions of ruthenium(III), rhodium(III) and palladium(II) ions with DNA with berberine as a probe (berberine, Scheme 1). The results are as follows: ruthenium(III) and rhodium(III) ions show different effects from that of the palladium(II) ion on the fluorescence spectra characteristics of berberine-DNA system. Quenching fluorescence is seen with palladium(II) ion addition, whereas increasing fluorescence is observed for ruthenium(III) and rhodium(III) ions. The addition of ruthenium(III), rhodium(III) and palladium(II) ions causes the increasing absorption of the DNA solution. The addition of ruthenium(III), rhodium(III) and palladium(II) ions to the DNA solution also causes the circular dichroism spectra to change. The above results suggest that different metal ions exhibit different affinity when binding to DNA, which could correlate well with the ions’ charge, structure and the ability to coordinate. There is a comparison between Pt(IV) and Pd(II) ions on the fluorescence of the berberine-DNA system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Rosenberg L. Camp ParticleVan J.E. Trosko V.H. Mansour (1969) Nature (London) 223 385

    Google Scholar 

  2. M. Kharatishvili M. Mathieson N. Farrell (1971) Inorg. Chim. Acta 255 1 Occurrence Handle10.1016/S0020-1693(96)05196-1

    Article  Google Scholar 

  3. K.E Erkkila D.T. Odom J.K. Barton (1999) Chem. Rev. 99 2777 Occurrence Handle1:CAS:528:DyaK1MXksl2ls7w%3D Occurrence Handle10.1021/cr9804341

    Article  CAS  Google Scholar 

  4. P. Nodell P. Lincoln (2005) J. Am. Chem. Soc. 127 9670 Occurrence Handle10.1021/ja0521674 Occurrence Handle1:CAS:528:DC%2BD2MXltVylsrg%3D

    Article  CAS  Google Scholar 

  5. E.-J. Gao S.-M. Zhao Q.T. Liu (2004) Inorg. Chim. Feb. 20 191 Occurrence Handle1:CAS:528:DC%2BD2cXlsVegtw%3D%3D

    CAS  Google Scholar 

  6. G.-Q. Gong Z.-X. Zong Y.-M. Song (1999) Spectra Chimica Acta Part A 55 1903 Occurrence Handle10.1016/S1386-1425(99)00053-0

    Article  Google Scholar 

  7. Y.-M. Song X.-L. Lu M.-L. Yang (2005) Transition Met. Chem. 30 499 Occurrence Handle1:CAS:528:DC%2BD2MXltlKgtrc%3D Occurrence Handle10.1007/s11243-005-2663-0

    Article  CAS  Google Scholar 

  8. J.K. Baton J.M. Goldberg C.V. Kumar N.J. Turro (1986) J. Am. Chem. Soc. 108 2081 Occurrence Handle10.1021/ja00268a057

    Article  Google Scholar 

  9. J.K. Veal R.L. Rill (1991) Biochemistry 80 1132 Occurrence Handle10.1021/bi00218a035

    Article  Google Scholar 

  10. C.V. Kumar J.K. Barton N.J. Turro (1985) J. Am. Chem. Soc. 107 5518 Occurrence Handle1:CAS:528:DyaL2MXltF2hsLw%3D Occurrence Handle10.1021/ja00305a032

    Article  CAS  Google Scholar 

  11. J.K. Barton A.T. Danishefsky J.K. Golderg (1984) J. Am. Cham. Soc. 106 2172 Occurrence Handle1:CAS:528:DyaL2cXhtlCntL0%3D Occurrence Handle10.1021/ja00319a043

    Article  CAS  Google Scholar 

  12. M.R. Efink C.A. Ghiron (1981) Anal. Biochem. 114 199 Occurrence Handle10.1016/0003-2697(81)90474-7

    Article  Google Scholar 

  13. A. Wolfe G.H. Shimer T. Meehan (1987) Biochemistry 62 6329

    Google Scholar 

  14. Y.-Z. Kang H.-B. Shen Y.-Q. Luo et al. (2002) J. Chinese Rare Earths 23 22

    Google Scholar 

  15. Z.L. Zhang W.M. Huang J.L. Tang et al. (2002) J. Biophy. Chem. 97 7 Occurrence Handle1:CAS:528:DC%2BD38XktFKhtbo%3D Occurrence Handle10.1016/S0301-4622(02)00006-6

    Article  CAS  Google Scholar 

  16. Y.-M. Song P.-J. Yang L.-F. Wang et al. (2003) J. Acta. Chimic. Sinic. 61 1266 Occurrence Handle1:CAS:528:DC%2BD3sXmslehsrw%3D

    CAS  Google Scholar 

  17. P. Yang H.F. Wang F. Gao et al. (1996) J. Inorg. Biochem. 62 137 Occurrence Handle1:CAS:528:DyaK28Xitlegurs%3D Occurrence Handle10.1016/0162-0134(95)00130-1

    Article  CAS  Google Scholar 

  18. (a) R. Purrello, A. Raudino and L.M. Scolaro et al., J. Phys. Chem. B, 104, 10900 (2000), (b) R. Lauceri, A. Raudino and L.M. Scolaro et al., J. Am. Chem. Soc., 124, 894 (2002), (c) R. Purrello, L.M. Scolaro and E. Bellacchio et al., Inorg. Chem., 37, 3647 (1998).

  19. Z.X. Wang D.J. Liu S.J. Dong (2001) Chin. J. Chem. 19 662 Occurrence Handle1:CAS:528:DC%2BD3MXlsVyqt7g%3D Occurrence Handle10.1002/cjoc.20010190707

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-min Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Ym., Zheng, Xr. & Yao, Xq. Study on the Interactions of Ruthenium(III), Rhodium(III) and Palladium(II) Ions with DNA. Transition Met Chem 31, 616–620 (2006). https://doi.org/10.1007/s11243-006-0038-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-006-0038-9

Keywords

Navigation