Skip to main content
Log in

(1,3)Pyrenophanes containing crown ether moieties as fluorescence sensors for metal and ammonium ions†

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Crown ether containing (1,3)pyrenophanes 1 –6 were synthesized, and UV absorption and fluorescence spectroscopic studies were carried out to determine their abilities to form complexes with metal and ammonium ions. The fluorescence spectra of 1.0 × 10−5 M solutions of 1, 2, 4 and 6 in 1 : 1 v/v CH2Cl2 : CH3CN were comprised of both monomer and intramolecular excimer emission bands, while only monomer emission bands were present in the fluorescence spectra of 3 and 5. The intensities of the intramolecular excimer emission bands of 1, 2, 4 and 6 in 1 :1 v/v CH2Cl2 : CH3CN decreased and those of the monomer emission increased in conjunction with the existence of isoemissive points upon the addition of increasing concentrations of various metal perchlorates. The fluorescence spectral changes were dependent on the sizes of crown ether rings and metal ions and, as such, they reflected equilibrium constants for the formation of metal-crown ether complexes. Addition of n-Bu2NH2 +PF6 or (PhCH2)2NH2 +PF6 to the solutions of the (1,3)pyrenophane linked crown ethers, which brought about similar fluorescence spectral changes, led to the formation of pseudo-rotaxanes as was evidenced by an analysis of 1H NMR spectra and Job’s plots. The fluorescence changes of 1 occurred during 5 cycles of repetitive addition and removal of Ba2+. The ratio of intensities of the monomer to the intramolecular excimer emission bands of 1, 2, 4 and 6 increased as the temperature decreased. Based on the experimental observations and the results of DFT calculations, it is concluded that the (1,3)pyrenophanes exist in solution as equilibrium mixtures of anti monomer emitting and syn intramolecular excimer emitting conformers and the equilibrium favors the anti form when the crown ether moieties form complexes with metal or ammonium ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Birks, The Pyrene Excimer, Acta Phys. Pol., 1968, 34, 603–617.

    CAS  Google Scholar 

  2. Th. Förster, Excimers, Angew. Chem., Int. Ed. Engl., 1969, 8, 333–343.

  3. F. M. Winnik, Photophysics of Preassociated Pyrenes in Aqueous Polymer Solutions and in Other Organized Media, Chem. Rev., 1993, 93, 587–614.

    Article  CAS  Google Scholar 

  4. S. Karuppannan and J.-C. Chambron, Supramolecular Chemical Sensors Based on Pyrene Monomer–Excimer Dual Luminescence, Chem. - Asian J., 2011, 6, 964–984.

    Article  CAS  Google Scholar 

  5. M. E. Østergaard and P. J. Hrdlicka, Pyrene-functionalized oligonucleotides and locked nucleic acids (LNAs): Tools for fundamental research, diagnostics, and nanotechnology, Chem. Soc. Rev., 2011, 40, 5771–5788.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. T. M. Figueira-Duarte and K. Müllen, Pyrene-Based Materials for Organic Electronics, Chem. Rev., 2011, 111, 7260–7314.

    Article  CAS  Google Scholar 

  7. G. Bains, A. B. Patel and V. Narayanaswami, Pyrene: A Probe to Study Protein Conformation and Conformational Changes, Molecules, 2011, 16, 7909–7935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. E. Manandhar and K. J. Wallace, Host–guest chemistry of pyrene-based molecular receptors, Inorg. Chim. Acta, 2012, 381, 15–43.

    Article  CAS  Google Scholar 

  9. J. Duhamel, New Insights in the Study of Pyrene Excimer Fluorescence to Characterize Macromolecules and their Supramolecular Assemblies in Solution, Langmuir, 2012, 28, 6527–6538.

    Article  CAS  PubMed  Google Scholar 

  10. J. J. Bryant and U. H. F. Bunz, Click to Bind: Metal Sensors, Chem.Asian J., 2013, 8, 1354–1367.

    Article  CAS  PubMed  Google Scholar 

  11. J. M. Casas-Solvas, J. D. Howgego and A. P. Davis, Synthesis of substituted pyrenes by indirect methods, Org. Biomol. Chem., 2014, 12, 212–232.

    Article  CAS  Google Scholar 

  12. X. Feng, J.-Y. Hu, C. Redshaw and T. Yamato, Functionalization of Pyrene To Prepare Luminescent Materials–Typical Examples of Synthetic Methodology, Chem.Eur. J., 2016, 22, 11898–11916.

    Article  CAS  PubMed  Google Scholar 

  13. K. E. Krakowiak, J. S. Bradshaw and D. J. Zamecka- Krakowiak, Synthesis of Aza-Crown Ethers, Chem. Rev., 1989, 89, 929–972.

    Article  CAS  Google Scholar 

  14. Crown Ethers & Cryptands, ed. G. W. Gokel, Royal Society of Chemistry, London, 1991.

  15. R. Cacciapaglia and L. Mandolini, Catalysis by Metal Ions in Reactions of Crown Ether Substrates, Chem. Soc. Rev., 1993, 22, 221–231.

    Article  CAS  Google Scholar 

  16. A. P. de Silva, D. B. Fox, A. J. M. Huxley and T. S. Moody, Combining luminescence, coordination and electron transfer for signalling purposes, Coord. Chem. Rev., 2000, 205, 41–57.

    Article  Google Scholar 

  17. S. Fery-Forgues and F. Al-Ali, Bis(azacrown ether) and bis (benzocrown ether) dyes: butterflies, tweezers and rods in cation binding, J. Photochem. Photobiol., C, 2004, 5, 139–153.

    Article  CAS  Google Scholar 

  18. G. W. Gokel, W. M. Leevy and M. E. Weber, Crown Ethers: Sensors for Ions and Molecular Scaffolds for Materials and Biological Models, Chem. Rev., 2004, 104, 2723–2750.

    Article  CAS  PubMed  Google Scholar 

  19. J. Li, D. Yim, W.-D. Jang and J. Yoon, Recent progress in the design and applications of fluorescence probes containing crown ethers, Chem. Soc. Rev., 2017, 46, 2437–2458.

    Article  CAS  PubMed  Google Scholar 

  20. A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher and T. E. Rice, Signaling Recognition Events with Fluorescent Sensors and Switches, Chem. Rev., 1997, 97, 1515–1566.

    Article  Google Scholar 

  21. B. Valeur and I. Leray, Design principles of fluorescent molecular sensors for cation recognition, Coord. Chem. Rev., 2000, 205, 3–40.

    CAS  Google Scholar 

  22. H.-F. Ji, R. Dabestani, G. M. Brown and R. L. Hettich, Spacer Length Effect on the Photoinduced Electron Transfer Fluorescent Probe for Alkali Metal Ions, Photochem. Photobiol., 1999, 69, 513–516.

    Article  CAS  Google Scholar 

  23. H. Takemura, H. Nakamichi and K. Sako, Pyrene–azacrown ether hybrid: cation–π interaction, Tetrahedron Lett., 2005, 46, 2063–2066.

    Article  CAS  Google Scholar 

  24. Ü. Ocak, M. Ocak, A. Basoglu, S. Parlayan, H. Alp and H. Kantekin, Complexation of metal ions with the novel diazadithia crown ethers carrying two pyrene pendants in acetonitrile-tetrahydrofuran, J. Inclusion Phenom. Macrocyclic Chem., 2010, 67, 19–27.

    Article  CAS  Google Scholar 

  25. Ü. Ocak, M. Ocak, S. Parlayan, A. Basoglu, Y. Caglar and Z. Bahadir, Azathia crown ethers carrying pyrene pendant as receptor molecules for metal sensor systems, J. Lumin., 2011, 131, 808–814.

    Article  CAS  Google Scholar 

  26. Z. Li, W. Li, F. Liu and X. Wang, Theoretical design on a new double functional device of 2,2′-bipyridine-embedded N-(9-pyrenyl methyl)aza-15-crown-5, J. Phys. Org. Chem., 2017, e3792.

  27. S. Nath and U. Maitra, A Simple and General Strategy for the Design of Fluorescent Cation Sensor Beads, Org. Lett., 2006, 8, 3239–3242.

    Article  CAS  PubMed  Google Scholar 

  28. Z. Wang, S. H. Chang and T. J. Kang, Cation complexation behavior of pyrene- and anthracene-appended new crown ether derivatives, Spectrochim. Acta, Part A, 2008, 70, 313–317.

    Article  CAS  Google Scholar 

  29. R. S. Kathayat and N. S. Finney, Sulfoxides as Response Elements for Fluorescent Chemosensors, J. Am. Chem. Soc., 2013, 135, 12612–12614.

    Article  CAS  PubMed  Google Scholar 

  30. T. Jao, G. S. Beddard, P. Tundo and J. H. Fendler, Stabilization of Colloidal Silver Produced by Pyrene- Sensitized Photoreduction of Silver Ions in Methanol, J. Phys. Chem., 1981, 85, 1963–1966.

    Article  CAS  Google Scholar 

  31. S. H. Kim, K. C. Song, S. Ahn, Y. S. Kang and S.-K. Chang, Hg2+-selective fluoroionophoric behavior of pyrene appended diazatetrathia-crown ether, Tetrahedron Lett., 2006, 47, 497–500.

    Article  CAS  Google Scholar 

  32. M. G. Choi, H. J. Kim and S.-K. Chang, Pyrene Appended Hg2+-selective Fluoroionophore Based upon Diaza-Crown Ether, Bull. Korean Chem. Soc., 2008, 29, 567–570.

    Article  CAS  Google Scholar 

  33. K. Kubo and T. Sakurai, Synthesis and Properties of N,N′- Bis(1-pyrenylmethyl)-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane. Metal Ion-Induced Monomer and Excimer Emission Enhancement, Chem. Lett., 1996, 25, 959–960.

    Google Scholar 

  34. D. Kraskouskaya, M. Bancerz, H. S. Soor, J. E. Gardiner and P. T. Gunning, An Excimer-Based, Turn-On Fluorescent Sensor for the Selective Detection of Diphosphorylated Proteins in Aqueous Solution and Polyacrylamide Gels, J. Am. Chem. Soc., 2014, 136, 1234–1237.

    Article  CAS  PubMed  Google Scholar 

  35. J.-Y. Li, L.-P. Zhang, L.-Z. Wu, B.-J. Wang and C.-H. Hung, Synthesis of Diazacrown Ethers with Chromophores and Their Photoinduced Charge-Separation with Methyl Viologen, Chin. J. Chem., 2001, 19, 960–965.

    Article  CAS  Google Scholar 

  36. Y. Nakahara, Y. Matsumi, W. Zhang, T. Kida, Y. Nakatsuji and I. Ikeda, Fluorometric Sensing of Alkaline Earth Metal Cations by New Lariat Ethers Having Plural Pyrenylmethyl Groups on the Electron-Donating Sidearms, Org. Lett., 2002, 4, 2641–2644.

    Article  CAS  PubMed  Google Scholar 

  37. D. Y. Sasaki, T. A. Waggoner, J. A. Last and T. M. Alam, Crown Ether Functionalized Lipid Membranes: Lead Ion Recognition and Molecular Reorganization, Langmuir, 2002, 18, 3714–3721.

    Article  CAS  Google Scholar 

  38. Y. Nakahara, T. Kida, Y. Nakatsuji and M. Akashi, Synthesis of Double-Armed Lariat Ethers with Pyrene Moieties at Each End of Two Sidearms and Their Fluorescence Properties in the Presence of Alkali Metal and Alkaline Earth Metal Cations, J. Org. Chem., 2004, 69, 4403–4411.

    Article  CAS  PubMed  Google Scholar 

  39. Y. Nakatsuji, M. Nakamura, T. Oka and M. Muraoka, Selective Fluorometric Sensing of Calcium Cation by C-Pivot Lariat Monoaza-crown Ether with Two Pyrene Moieties, Chem. Lett., 2011, 40, 1226–1228.

    Article  CAS  Google Scholar 

  40. S. Nishizawa, M. Watanabe, T. Uchida and N. Teramae, Fluorescence ratio sensing of alkali metal ions based on control of the intramolecular exciplex formation, J. Chem. Soc., Perkin Trans. 2, 1999, 141–143.

  41. I. Suzuki, M. Ito, T. Osa and J. Anzai, Molecular Recognition of Deoxycholic Acids by Pyrene-Appended γ-Cyclodextrin Connected with a Rigid Azacrown Spacer, Chem. Pharm. Bull., 1999, 47, 151–155.

    Article  CAS  Google Scholar 

  42. A. Yamauchi, T. Hayashita, A. Kato, S. Nishizawa, M. Watanabe and N. Teramae, Selective Potassium Ion Recognition by Benzo-15-crown-5 Fluoroionophore/ γ-Cyclodextrin Complex Sensors in Water, Anal. Chem., 2000, 72, 5841–5846.

    Article  CAS  PubMed  Google Scholar 

  43. A. Yamauchi, T. Hayashita, A. Kato and N. Teramae, Supramolecular Crown Ether Probe/γ-Cyclodextrin Complex Sensors for Alkali Metal Ion Recognition in Water, Bull. Chem. Soc. Jpn., 2002, 75, 1527–1532.

    Article  CAS  Google Scholar 

  44. T. Hayashita, A. Yamauchi, A.-J. Tong, J. C. Lee, B. D. Smith and N. Teramae, Design of Supramolecular Cyclodextrin Complex Sensors for Ion and Molecule Recognition in Water, J. Inclusion Phenom. Macrocyclic Chem., 2004, 50, 87–94.

    Article  CAS  Google Scholar 

  45. J. Xie, M. Ménand, S. Maisonneuve and R. Métivier, Synthesis of Bispyrenyl Sugar-Aza-Crown Ethers as New Fluorescent Molecular Sensors for Cu(II), J. Org. Chem., 2007, 72, 5980–5985.

    Article  CAS  PubMed  Google Scholar 

  46. Z. Jarolímová, M. Vishe, J. Lacour and E. Bakker, Potassium ion-selective fluorescent and pH independent nanosensors based on functionalized polyether macrocycles, Chem. Sci., 2016, 7, 525–533.

    Article  PubMed  CAS  Google Scholar 

  47. K. Fujimoto, Y. Muto and M. Inouye, A general and versatile molecular design for host molecules working in water: a duplex-based potassium sensor consisting of three functional regions, Chem. Commun., 2005, 4780–4782.

  48. F. M. Jradi, M. H. Al-Sayah and B. R. Kaafarani, Synthesis and metal-binding studies of a novel pyrene discotic, Tetrahedron Lett., 2008, 49, 238–242.

    Article  CAS  Google Scholar 

  49. T. Umemoto, T. Kawashima, Y. Sakata and S. Misumi, Layered Compounds. XXVIII. [2.2](1,3)Pyrenophane and Another Triple-Layered Metacyclo-Pyrenophane, Chem. Lett., 1975, 4, 837–840.

    Article  Google Scholar 

  50. T. Umemoto, S. Satani, Y. Sakata and S. Misumi, Layered compounds. XXIX. [2.2](2,7)Pyrenophane and its 1,13- diene, Tetrahedron Lett., 1975, 16, 3159–3162.

    Article  Google Scholar 

  51. T. Hayashi, N. Mataga, Y. Sakata and S. Misumi, Effects of solvent polarity on the fluorescence spectrum of [2.2](1,3) pyrenophane, Chem. Phys. Lett., 1976, 41, 325–328.

    Article  CAS  Google Scholar 

  52. R. H. Mitchell, R. J. Carruthers and J. C. M. Zwinkels, Straining strained molecules - I. The synthesis of the first cyclophane within a cyclophane - [2,2]paracyclo ([2,2]metacyclophane), Tetrahedron Lett., 1976, 17, 2585–2588.

    Article  Google Scholar 

  53. T. Hayashi, N. Mataga, T. Umemoto, Y. Sakata and S. Misumi, Solvent-Induced Polarization Phenomena in the Excited State of Composite Systems with Identical Halves. 2. Effects of Solvent Polarity upon the Fluorescence of [2.2](1,3)Pyrenophane, J. Phys. Chem., 1977, 81, 424–429.

    Article  CAS  Google Scholar 

  54. H. Irngartinger, R. G. H. Kirrstetter, C. Krieger, H. Rodewald and H. A. Staab, Synthese und struktur von [2.2](2,7)pyrenophan, Tetrahedron Lett., 1977, 18, 1425–1428.

    Article  Google Scholar 

  55. T. Kawashima, T. Otsubo, Y. Sakata and S. Misumi, Syntheses of three [2.2]pyrenophanes as an excimer model, Tetrahedron Lett., 1978, 19, 5115–5118.

    Article  Google Scholar 

  56. H. A. Staab and R. G. H. Kirrstetter, [2.2](2,7)Pyrenophan als Excimeren-Modell: Synthese und spektroskopische Eigenschaften, Liebigs Ann. Chem., 1979, 886–898.

  57. H. A. Staab, N. Riegler, F. Diederich, C. Krieger and D. Schweitzer, [3.3]- and [4.4](2,7)Pyrenophanes as Excimer Models: Synthesis, Molecular Structure, and Spectroscopic Properties, Chem. Ber., 1984, 117, 246–259.

    Article  CAS  Google Scholar 

  58. T. Yamato, A. Miyazawa and M. Tashiro, Synthesis and Desulfurization of 2,11-Dithia[3]metacyclo- and 2,11- Dithia[3]paracyclo[3](4,9)pyrenophanes, Chem. Ber., 1993, 126, 2505–2511.

    Article  CAS  Google Scholar 

  59. T. Yamato, A. Miyazawa and M. Tashiro, Medium-Sized Cyclophanes. Part 31. Synthesis and Electrophilic Substitution of 8-Substituted [2]Metacyclo[2](1,3)pyrenophanes, J. Chem. Soc., Perkin Trans. 1, 1993, 3127–3137.

  60. G. J. Bodwell, J. N. Bridson, T. J. Houghton, J. W. J. Kennedy and M. R. Mannion, 1,8-Dioxa[8](2,7)pyrenophane, a Severely Distorted Polycyclic Aromatic Hydrocarbon, Angew. Chem., Int. Ed. Engl., 1996, 35, 1320–1321.

    Article  CAS  Google Scholar 

  61. H. A. Staab, D.-Q. Zhang and C. Krieger, [3](N,N’,)-1,8;4,5- Naphthalenetetracarboxdiimido-[3](2,7)pyrenophane and Its [4,4]Cyclophane Homologue, Liebigs Ann./Recl., 1997, 1551–1556.

  62. M. Inouye, K. Fujimoto, M. Furusyo and H. Nakazumi, Molecular Recognition Abilities of a New Class of Water- Soluble Cyclophanes Capable of Encompassing Neutral Cavity, J. Am. Chem. Soc., 1999, 121, 1452–1458.

    Article  CAS  Google Scholar 

  63. G. J. Bodwell, J. N. Bridson, T. J. Houghton, J. W. J. Kennedy and M. R. Mannion, 1,7-Dioxa[7](2,7)pyrenophane: The Pyrene Moiety Is More Bent than That of C70, Chem.Eur. J., 1999, 5, 1823–1827.

    Article  CAS  Google Scholar 

  64. G. J. Bodwell, J. J. Fleming, M. R. Mannion and D. O. Miller, Nonplanar Aromatic Compounds. 3. A Proposed New Strategy for the Synthesis of Buckybowls. Synthesis, Structure and Reactions of [7]-, [8]- and [9](2,7) Pyrenophanes, J. Org. Chem., 2000, 65, 5360–5370.

    Article  CAS  Google Scholar 

  65. G. J. Bodwell, D. O. Miller and R. J. Vermeij, Nonplanar Aromatic Compounds. 6. [2]Paracyclo[2](2,7)pyrenophane. A Novel Strained Cyclophane and a First Step on the Road to a “Vögtle” Bent, Org. Lett., 2001, 3, 2093–2096.

    Article  CAS  Google Scholar 

  66. G. J. Bodwell, J. J. Fleming and D. O. Miller, Non-planar aromatic compounds. Part 4: Fine tuning the degree of bend in the pyrene moiety of [7](2,7)pyrenophanes by modifying the nature of the bridge, Tetrahedron, 2001, 57, 3577–3585.

    Article  CAS  Google Scholar 

  67. A. Tsuge, Y. Tanba, T. Moriguchi and K. Sakata, Preparation and Molecular Arrangement of Novel Pyrenophanes, Chem. Lett., 2002, 31, 384–385.

    Article  Google Scholar 

  68. H. Abe, Y. Mawatari, H. Teraoka, K. Fujimoto and M. Inouye, Synthesis and Molecular Recognition of Pyrenophanes with Polycationic or Amphiphilic Functionalities: Artificial Plate-Shaped Cavitant Incorporating Arenes and Nucleotides in Water, J. Org. Chem., 2004, 69, 495–504.

    Article  CAS  Google Scholar 

  69. H. Hayashi, N. Matsumura and K. Mizuno, A novel pyrenophane bearing tetraazathiapentalene skeleton, J. Chem. Res., 2004, 599–601.

  70. I. Aprahamian, G. J. Bodwell, J. J. Fleming, G. P. Manning, M. R. Mannion, B. L. Merner, T. Sheradsky, R. J. Vermeij and M. Rabinovitz, Reduction of Strained Polycycles: How Much Strain Can a Pyrene Anion Take?, J. Am. Chem. Soc., 2004, 126, 6765–6775.

    Article  CAS  Google Scholar 

  71. A. Tsuge, M. Otsuka, T. Moriguch and K. Sakata, Syntheses, structural properties, and charge-transfer complexes of pyrenophanes, Org. Biomol. Chem., 2005, 3, 3590–3593.

    Article  CAS  PubMed  Google Scholar 

  72. B. Zhang, G. P. Manning, M. A. Dobrowolski, M. K. Cyranski and G. J. Bodwell, Nonplanar Aromatic Compounds. 9. Synthesis, Structure, and Aromaticity of 1 : 2,13 : 14-Dibenzo[2]paracyclo[2](2,7)pyrenophane-1,13- diene, Org. Lett., 2008, 10, 273–276.

    Article  CAS  Google Scholar 

  73. M. A. Dobrowolski, M. K. Cyranski, B. L. Merner, G. J. Bodwell, J. I. Wu and P. von R. Schleyer, Interplay of π-Electron Delocalization and Strain in [n,](2,7) Pyrenophanes, J. Org. Chem., 2008, 73, 8001–8009.

    Article  CAS  PubMed  Google Scholar 

  74. D. Franz, S. J. Robbins, R. T. Boeré and P. W. Dibble, Synthesis and Characterization of 2,7-Di(tert-butyl)pyreno [4,5-c:9,10-c’]difuran and Derived Pyrenophanes, J. Org. Chem., 2009, 74, 7544–7547.

    Article  CAS  PubMed  Google Scholar 

  75. K. Imai, S. Hatano, A. Kimoto, J. Abe, Y. Tamai and N. Nemoto, Optical and electronic properties of siloxanebridged cyclic dimers with naphthylene or pyrenylene moieties, Tetrahedron, 2010, 66, 8012–8017.

    Article  CAS  Google Scholar 

  76. Y. Yang, M. R. Mannion, L. N. Dawe, C. M. Kraml, R. A. Pascal Jr. and G. J. Bodwell, Synthesis, Crystal Structure, and Resolution of [10](1,6)Pyrenophane: An Inherently Chiral [n]Cyclophane, J. Org. Chem., 2012, 77, 57–67.

    Article  CAS  PubMed  Google Scholar 

  77. P. R. Nandaluru, P. Dongare, C. M. Kraml, R. A. Pascal Jr., L. N. Dawe, D. W. Thompson and G. J. Bodwell, Concise, aromatization-based approach to an elaborate C 2- symmetric pyrenophane, Chem. Commun., 2012, 48, 7747–7749.

    Article  CAS  Google Scholar 

  78. P. G. Ghasemabadi, T. Yao and G. J. Bodwell, Cyclophanes containing large polycyclic aromatic hydrocarbons, Chem. Soc. Rev., 2015, 44, 6494–6518.

    Article  CAS  Google Scholar 

  79. B. Zhang, Y. Zhao and G. J. Bodwell, Kinetic Stabilization of a Highly Bent Pyrene System, Synlett, 2016, 2113–2116.

  80. P. Kahl, J. P. Wagner, C. Balestrieri, J. Becker, H. Hausmann, G. J. Bodwell and P. R. Schreiner, [2](1,3) Adamantano[2](2,7)pyrenophane: A Hydrocarbon with a Large Dipole Moment, Angew. Chem., Int. Ed., 2016, 55, 9277–9281.

    Article  CAS  Google Scholar 

  81. Y. García-Rodeja and I. Fernández, Factors Governing the Diels–Alder Reactivity of (2,7)Pyrenophanes, J. Org. Chem., 2017, 82, 8157–8164.

    Article  PubMed  CAS  Google Scholar 

  82. Y. Sagara and N. Tamaoki, Mechanoresponsive luminescence and liquid-crystalline behaviour of a cyclophane featuring two 1,6-bis(phenylethynyl)pyrene groups, RSC Adv., 2017, 7, 47056–47062.

    Article  CAS  Google Scholar 

  83. H. Maeda, M. Hironishi, R. Ishibashi, K. Mizuno and M. Segi, Synthesis and fluorescence properties of dioxa-, dithia-, and diselena-[3.3](1,3)pyrenophanes, Photochem. Photobiol. Sci., 2017, 16, 228–237.

    Article  CAS  PubMed  Google Scholar 

  84. H. Maeda, Y. Inoue, H. Ishida and K. Mizuno, UV Absorption and Fluorescence Properties of Pyrene Derivatives Having Trimethylsilyl, Trimethylgermyl, and Trimethylstannyl Groups, Chem. Lett., 2001, 30, 1224–1225.

    Article  Google Scholar 

  85. H. Maeda, T. Maeda, K. Mizuno, K. Fujimoto, H. Shimizu and M. Inouye, Alkynylpyrenes as Improved Pyrene-Based Biomolecular Probes with the Advantages of High Fluorescence Quantum Yields and Long Absorption/ Emission Wavelengths, Chem.Eur. J., 2006, 12, 824–831.

    Article  CAS  PubMed  Google Scholar 

  86. A. M. Ara, T. Iimori, T. Nakabayashi, H. Maeda, K. Mizuno and N. Ohta, Electric Field Effects on Absorption and Fluorescence Spectra of Trimethylsilyl- and Trimethylsilylethynyl-Substituted Compounds of Pyrene in a PMMA Film, J. Phys. Chem. B, 2007, 111, 10687–10696.

    Article  CAS  PubMed  Google Scholar 

  87. T. Tamai, M. Watanabe, H. Maeda and K. Mizuno, Fluorescent Polymer Particles Incorporating Pyrene Derivatives, J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 1470–1475.

    Article  CAS  Google Scholar 

  88. H. Maeda, H. Ishida, Y. Inoue, A. Merpuge, T. Maeda and K. Mizuno, UV absorption and fluorescence properties of fused aromatic hydrocarbons having trimethylsilyl, trimethylgermyl, and trimethylstannyl groups, Res. Chem. Intermed., 2009, 35, 939–948.

    Article  CAS  Google Scholar 

  89. M. Yamaji, H. Maeda, Y. Nanai and K. Mizuno, Substitution Effects of C-C Triple Bonds on Deactivation Processes from the Fluorescent State of Pyrene Studied by Emission and Transient Absorption Measurements, ISRN Phys. Chem., 2012, 103817.

  90. H. Maeda, T. Shoji and M. Segi, Effects of substituents on silicon atoms upon absorption and fluorescence properties of 1,3,6,8-tetrakis(silylethynyl)pyrenes, Tetrahedron Lett., 2017, 58, 4372–4376.

    Article  CAS  Google Scholar 

  91. H. Maeda, T. Suzuki and M. Segi, Effects of substituents in silyl groups on the absorption, fluorescence and structural properties of 1,3,6,8-tetrasilylpyrenes, Photochem. Photobiol. Sci., 2018, 17, 781–792.

    Article  CAS  PubMed  Google Scholar 

  92. H. Maeda, K. Hirose and M. Segi, Synthesis of pyrenocrown ethers as fluorescent sensors and their recognition ability of metal ions, J. Lumin., 2018, 204, 269–277.

    Article  CAS  Google Scholar 

  93. H. Maeda, K. Tanaka, M. Aratani and M. Segi, Ethynylpyrene Linked Benzocrown Ethers as Fluorescent Sensors for Metal Ions, Photochem. Photobiol., 2019, 95, 762–772.

    Article  CAS  PubMed  Google Scholar 

  94. J. M. G. Martinho, Heavy-Atom Quenching of Monomer and Excimer Pyrene Fluorescence, J. Phys. Chem., 1989, 93, 6687–6692.

    Article  CAS  Google Scholar 

  95. J. S. Renny, L. L. Tomasevich, E. H. Tallmadge and D. B. Collum, Method of Continuous Variations: Applications of Job Plots to the Study of Molecular Associations in Organometallic Chemistry, Angew. Chem., Int. Ed., 2013, 52, 11998–12013.

    Article  CAS  Google Scholar 

  96. F. Ulatowski, K. Dabrowa, T. Balakier and J. Jurczak, Recognizing the Limited Applicability of Job Plots in Studying Host–Guest Interactions in Supramolecular Chemistry, J. Org. Chem., 2016, 81, 1746–1756.

    Article  CAS  PubMed  Google Scholar 

  97. D. B. Hibbert and P. Thordarson, The death of the Job plot, transparency, open science and online tools, uncertainty estimation methods and other developments in supramolecular chemistry data analysis, Chem. Commun., 2016, 52, 12792–12805.

    Article  CAS  Google Scholar 

  98. P. R. Ashton, P. J. Campbell, E. J. T. Chrystal, P. T. Glink, S. Menzer, D. Philp, N. Spencer, J. F. Stoddart, P. A. Tasker and D. J. Williams, Dialkylammonium Ion/Crown Ether Complexes: The Forerunners of a New Family of Interlocked Molecules, Angew. Chem., Int. Ed. Engl., 1995, 34, 1865–1869.

    Article  CAS  Google Scholar 

  99. P. R. Ashton, E. J. T. Chrystal, P. T. Glink, S. Menzer, C. Schiavo, N. Spencer, J. F. Stoddart, P. A. Tasker, A. J. P. White and D. J. Williams, Pseudorotaxanes Formed between Secondary Dialkylammonium Salts and Crown Ethers, Chem.Eur. J., 1996, 2, 709–728.

    Article  CAS  Google Scholar 

  100. T. Takata and N. Kihara, Rotaxanes synthesized from crown ethers and sec-ammonium salts, Rev. Heteroat. Chem., 2000, 22, 197–218.

    CAS  Google Scholar 

  101. C. Zhang, S. Li, J. Zhang, K. Zhu, N. Li and F. Huang, Benzo-21-Crown-7/Secondary Dialkylammonium Salt [2]Pseudorotaxane- and [2]Rotaxane-Type Threaded Structures, Org. Lett., 2007, 9, 5553–5556.

    Article  CAS  PubMed  Google Scholar 

  102. P. Thordarson, Determining association constants from titration experiments in supramolecular chemistry, Chem. Soc. Rev., 2011, 40, 1305–1323.

    Article  CAS  Google Scholar 

  103. The Nature of the Chemical Bond, ed. L. Pauling, Cornell University Press, Ithaca, NY, 3rd en, 1960.

  104. M. Ouchi, T. Kinashi, H. Ueda, M. Kojima and R. Miyoshi, Cation Binding Properties of Benzo-type Crown Ethers. Effect of Ring Size upon Complexation Phenomena, Rep. Grad. Sch. Eng., Univ. Hyogo, 2004, 57, 35–38.

    CAS  Google Scholar 

  105. A. L. Macanita and K. A. Zachariasse, Viscosity Dependence of Intramolecular Excimer Formation with 1,5-Bis(1-pyrenylcarboxy)pentane in Alkane Solvents as a Function of Temperature, J. Phys. Chem. A, 2011, 115, 3183–3195.

    Article  CAS  PubMed  Google Scholar 

  106. M. J. Snare, P. J. Thistlethwaite and K. P. Ghiggino, Kinetic Studies of Intramolecular Excimer Formation in Dipyrenylalkanes, J. Am. Chem. Soc., 1983, 105, 3328–3332.

    Article  CAS  Google Scholar 

  107. D. Declercq, P. Delbeke, F. C. De Schryver, L. van Meervelt and R. D. Miller, Ground- and Excited-State Interaction in Di-1-pyrenyl-Substituted Oligosilanes, J. Am. Chem. Soc., 1993, 115, 5702–5708.

    Article  CAS  Google Scholar 

  108. M. Kida, M. Kubo, T. Ujihira, T. Ebata, M. Abe and Y. Inokuchi, Selective Probing of Potassium Ion in Solution by Intramolecular Excimer Fluorescence of Dibenzo-Crown Ethers, ChemPhysChem, 2018, 19, 1331–1335.

    Article  CAS  PubMed  Google Scholar 

  109. S. Saba, R. Hernandez, C. C. Choy, K. Carta, Y. Bennett, S. Bondi, S. Kolaj and C. Bennett, A simple and efficient one-step protocol for the preparation of alkyl-substituted ammonium tetrafluoroborate and hexafluorophosphate salts, J. Fluorine Chem., 2013, 153, 168–171.

    Article  CAS  Google Scholar 

  110. Y. Miura, E. Yamano, A. Tanaka and J. Yamauchi, Generation, Isolation, and Characterization of N-(Arylthio)- 7-tert-butyl- and N-(Arylthio)-2,7-di-tert-butyl-1-pyrenylaminyl Radicals, J. Org. Chem., 1994, 59, 3294–3300.

    CAS  Google Scholar 

  111. T. M. Figueira-Duarte, S. C. Simon, M. Wagner, S. I. Druzhinin, K. A. Zachariasse and K. Müllen, Polypyrene Dendrimers, Angew. Chem., Int. Ed., 2008, 47, 10175–10178.

    Article  CAS  Google Scholar 

  112. J. Inoue, K. Fukui, T. Kubo, S. Nakazawa, K. Sato, D. Shiomi, Y. Morita, K. Yamamoto, T. Takui and K. Nakasuji, The First Detection of a Clar’s Hydrocarbon, 2,6,10-Tri-tert-Butyltriangulene: A Ground-State Triplet of Non-Kekulé Polynuclear Benzenoid Hydrocarbon, J. Am. Chem. Soc., 2001, 123, 12702–12703.

    Article  CAS  Google Scholar 

  113. N. A. Payne, L. C. Delmas, S. A. C. McDowell and A. R. Williams, Computationally forecasting the effect of dibenzylammonium substituents on pseudorotaxane formation with dibenzo[24]crown-8, Tetrahedron Lett., 2015, 56, 5175–5179.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajime Maeda.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/ c9pp00239a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maeda, H., Nakamura, K., Furuyama, T. et al. (1,3)Pyrenophanes containing crown ether moieties as fluorescence sensors for metal and ammonium ions†. Photochem Photobiol Sci 18, 2397–2410 (2019). https://doi.org/10.1039/c9pp00239a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00239a

Navigation