Skip to main content
Log in

The effect of small ions on transition metal complex configurations. Synthesis, crystal structures and properties of two new copper(II) complexes containing a tripodal ligand

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The monomeric CuII complex, [Cu(TLA)C2O4].2O (1), and dimeric CuII complex, [Cu2(TLA)2(C4O4)](ClO4)2 (1), where TLA=[tris(6-methyl-2-pyridyl)methyl]amine, have been synthesized and characterized. Both complexes have been obtained as single crystals and their structures were determined by X-ray diffraction analysis. The configuration of (1) is pseudo-octahedral owing to the fact that one of the Cu-Npyridyl bonds is much longer than the others. Two molecules of (1) link via hydrogen bonding to the oxalic oxygen in the unit cell. The copper complex (2) dimer is obtained, using the squarate ion as a bridging ligand, from a monomer copper complex, [Cu(TLA)N3].4ClO4 (3). By comparison of the configurations of (1), (2) with that of (3), the copper center is coordinated with TLA first, and then with secondary ligands, such as the azido group, squaric acid, or oxalate ion. The configurations of the transition metal complexes are affected by the smaller ions, as is further discussed below. The variable temperature magnetic susceptibilities of (2) have been studied, and the exchange integral is J=−2.5474 cm-, g=2.061, indicating the existence of a weaker anti-ferromagnetic interaction between the two copper ions in compound (2). The spectral behavior of the title complexes in solution has been studied by u.v.–vis. and i.r. techniques, and the results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Wendelstorf and R. Kramer, Angew. Chem., Int. Ed. Engl., 36, 2791 (1997).

    Google Scholar 

  2. M. Tsaramyrsi, M. Kaliva, A. Salfoglou, C. P. Raptopoulou, A. Terzic, V. Tangoulis and J. Giapintzakis, Inorg. Chem., 40, 5772 (2001).

    PubMed  Google Scholar 

  3. H. Karosaki, H. Yoshida, A. Fujimoto, M. Goto, M. Shionoya, E. Kimura, E. Espinosa, J-M. Barbe and R. Guilard, J. Chem. Soc., Dalton. Trans., 898 (2001).

  4. Z-H. Zhang, X-H. Bu, Z-H. Ma, W-M. Bu, Y. Tang and Q-H. Zhao, Polyhedron, 19, 1559 (2000).

    Google Scholar 

  5. Z-H. Zhang, H-L. Yang, Z-H. Ma and A-D. Qi, Chinese J. Chem., 18, 842 (2000).

    Google Scholar 

  6. Z-H. Zhang, X-H. Bu, Z-A. Zhu, Z-H. Jiang and Y. Chen, Transition Met. Chem., 21, 235 (1996).

    Google Scholar 

  7. G. R. Hay, J. C. Thibeault and R. Hoffmann, J. Am. Chem. Soc., 97, 4884 (1975).

    Google Scholar 

  8. M. Gupta, P. Mathur and R. J. Butcher, Inorg. Chem., 40, 878 (2001).

    PubMed  Google Scholar 

  9. M. Kodera, K. Katayama, Y. Tachi, K. Kano, S. Hirota, S. Fujinami and M. Suzuki, J. Am. Chem. Soc., 121, 11006 (1999).

    Google Scholar 

  10. S. Itoh, H. Nakao, L. M. Berreau, T. Konso, M. Komatsu and S. Fukuzumi, J. Am. Chem. Soc., 120, 2890 (1998).

    Google Scholar 

  11. E. I. Solomon, M. J. Baldwin and M. D. Lowery, Chem. Rev., 92, 521 (1992).

    Google Scholar 

  12. M. M. De Mota, J. Rodgers and S. M. Nelson, J. Chem. Soc., A, 2036 (1969).

  13. P. W. Selwood, Magnetochemistry, Interscience, New York, 1956, pp. 78–91.

    Google Scholar 

  14. Z. H. Zhang, Z. H. Ma, Y. Tang and W. J. Ruan, J. Chem. Crystallgr., 2, 119 (2004).

    Google Scholar 

  15. G. M. Sheldrick, SHELXTL 97 Programs for Crystal Structures, University of Göttingen, Germany, 1997.

    Google Scholar 

  16. B. Hathaway, Comprehensive Coordination Chemistry, Pergamon Press, Oxford, 1985, vol. 5.

    Google Scholar 

  17. J. Glerup, P. A. Goodson, D. J. Hodgson and K. Michelsen, Inorg. Chem., 34, 6255 (1995).

    Google Scholar 

  18. W-Z. Wang, X. Liu, Y. Meng, D-Z. Liao et al., Chem. Res. Chinese Univ., 1, 6 (2003).

    Google Scholar 

  19. C. Djordjevic, M. Lee and E. Sim, Inorg. Chem., 28, 719 (1989).

    Google Scholar 

  20. G. B. Deacon and R. Philips, J. Coord. Chem. Rev., 30, 227 (1980).

    Google Scholar 

  21. M. Tsaramyrsi, M. Kaliva, A. Salifoglou, C. P. Raptopoulou, A. Terzis, V. Tangorlis and J. Giapintzakis, Inorg. Chem., 40, 5772 (2001).

    PubMed  Google Scholar 

  22. L. A. Hall, and D. J. Williams, in A. G. Sykes (Ed. ), Advances in Inorganic Chemistry, Including Bioinorganic Studies, Academic Press, vol. 52, New York, 2001.

    Google Scholar 

  23. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th Edit., Wiley, New York, 1986.

    Google Scholar 

  24. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Comprehensive Text Book, 3rd Edit., Wiley, New York, 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Zh., Yang, Hl., Tang, Y. et al. The effect of small ions on transition metal complex configurations. Synthesis, crystal structures and properties of two new copper(II) complexes containing a tripodal ligand. Transition Metal Chemistry 29, 590–595 (2004). https://doi.org/10.1007/s11243-004-1033-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-004-1033-7

Keywords

Navigation