Skip to main content
Log in

Kinetics of oxidation of pyruvic acid by [ethylenebis(biguanide)]silver(III) in aqueous acidic media

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The oxidation of pyruvic acid by the title silver(III) complex in aqueous acidic (pH, 1.1–4.5) media is described. The reaction products are MeCO2H and CO2, together with a colourless solution of the Ag+ ion. The free ligand, ethylenebis(biguanide) is released in near-quantitative yield upon completion of the reduction. The parent complex, [Ag(H2L)]3+ and one of its conjugate bases, [Ag(HL)]2+, participate in the reaction with both pyruvic acid (HPy) and the pyruvate anion (Py) as the reactive reducing species. Ag+ was found to be catalytically inactive. At 25.0°C, I=1.0moldm−3, rate constants for the reactions [Ag(H2L)]3++HPy (k 1), [Ag(H2L)]3++Py (k 2), [Ag(HL)]2++HPy (k 3) and [Ag(HL)]2++Py (k 4) arek 1=(94±6)×10−5dm3mol−1s−1, (k 2 K a+k 3 K a1)= (1.3±0.1)×10−5s−1 and k 4=(58±4)×10−5dm3mol−1s−1, respectively, where K a1is the first acid dissociation constant of the [Ag(H2L)]3+ and K a is for pyruvic acid. A comparison between the k 1 and k 4 values is indicative of the judgement that k 2k 3. A one-electron inner-sphere redox mechanism seems more justified than an outer-sphere electron-transfer between the redox partners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (a) J.H. Fuhrhop, K.M. Kadish and D.G. Davis, J. Am. Chem. Soc., 95, 5140 (1973); (b) M. Krishnamurthy and J. Sutter, Inorg. Chem., 17, 2242 (1978); (c) P. Langley, P. Hambright and R.F.X. Williams, Inorg. Chim. Acta, 104, L25 (1985).

  2. L.J. Kirschenbaum and Y. Sun, Inorg. Chem., 30, 2360 (1991).

    Google Scholar 

  3. (a) L.J. Kirscenbaum, J.H. Ambrus and G. Atkinson, Inorg. Chem., 12, 2832 (1973); (b) K.K. Sen Gupta, A.K. Bera and N. Bhattacharjee, Transition Met. Chem., 23, 169 (1998); (c) S. Jinhuan, H. Shuying, S. Shgang and S. Hanwen, Chem. J. Int., 6, 1 (2004).

  4. P. Bandyopadhyay, B.B. Dhar, J. Bhattacharyya and S. Mukhopadhyay, Eur. J. Inorg. Chem., 4308 (2003).

  5. A. Das and S. Mukhopadhyay, Polyhedron, 23, 895 (2004).

    Google Scholar 

  6. (a) A. Viste, D.A. Holm, P.L. Wang and G.D. Veith, Inorg. Chem., 10, 631 (1971); (b) E. Pelizzetti and E. Mentasti, J. Chem. Soc., Dalton. Trans., 2086 (1975) and refs. cited therein.

  7. J.A. McMillan, Chem. Rev., 62, 65 (1962).

    Google Scholar 

  8. J.B. Kirwin, F.B. Peat, P.J. Proll and L.H. Sutcliffe, J. Phys. Chem., 67, 1617 (1963).

    Google Scholar 

  9. C.A. Rachnitz and S.B. Zomochnik, Talanta, 11, 713 (1964).

    Google Scholar 

  10. (a) B. Chakravarty, J. Inorg. Nucl. Chem., 41, 757 (1979); (b) K. Das, R. Banerjee, A. Das and S. Dasgupta, Bull. Electrochem., 5, 477 (1989).

  11. R. Banerjee, A. Das and S. Dasgupta, J. Chem. Soc., Dalton Trans., 1645 (1989).

  12. R. Banerjee, K. Das, A. Das and S. Dasgupta, Inorg. Chem., 28, 585 (1989).

    Google Scholar 

  13. R. Banerjee, R. Das and S. Mukhopadhyay, J. Chem. Soc., Dalton Trans., 1317 (1992).

  14. B.S. Walker and W.C. Boyd, Biochemistry and Human Metabolism, 3rd Edit., The Williams and Wilkins Company, Baltimore, 1957, p. 548.

    Google Scholar 

  15. K.K. Sengupta and T. Sarkar, Tetrahedron, 31, 123 (1975).

    Google Scholar 

  16. K.K. Sengupta and H.R. Chatterjee, Inorg. Chem., 17, 2429 (1978).

    Google Scholar 

  17. L. Maros, I. Molnar-Perl and L. Kover, J. Chem. Soc., Perkin Trans., II, 1327 (1976).

    Google Scholar 

  18. R. Panda and C. Patnaik, Bull. Korean Chem. Soc., 22, 909 (2001).

    Google Scholar 

  19. P. Manikyamba, React. Kinet. Catal. Lett., 78, 169 (2003).

    Google Scholar 

  20. D.E. Tallman and D.L. Leussing, J. Am. Chem. Soc., 91, 6253 (1969).

    Google Scholar 

  21. A. Aziz, S.J. Lyle and J.E. Newbery, J. Inorg. Nucl. Chem., 33, 1757 (1971).

    Google Scholar 

  22. D.L. Leussing and D.C. Shultz, J. Am. Chem. Soc., 86, 4846 (1964).

    Google Scholar 

  23. D.A. Zatko and J.P. Prather, J. Electron Spectrosc. Relat. Phenom., 2, 191 (1973).

    Google Scholar 

  24. S. Mukhopadhyay and R. Banerjee, Polyhedron, 13, 53 (1994).

    Google Scholar 

  25. (a) P. Ray and K. Chakravarty, J. Indian Chem. Soc., 21, 47 (1944); (b) P. Ray, Inorg. Synth., 6, 74 (1960).

  26. S. Takenaka, S. Murakami, R. Shinke and K. Aoki, Arch. Microbiol., 170, 132 (1998).

    PubMed  Google Scholar 

  27. S. Banerjee, U. Roy Choudhury, B.C. Ray, R. Banerjee and S. Mukhopadhyay, Anal. Lett., 34, 2797 (2001).

    Google Scholar 

  28. S. Banerjee, U. Roy Choudhury, R. Banerjee and S. Mukhopadhyay, J. Chem. Soc., Dalton Trans., 2047 (2002).

  29. K. Dutta, S. Bhattacharjee, B. Choudhuri and S. Mukhopadhyay, J. Environ. Monit., 4, 754 (2002).

    PubMed  Google Scholar 

  30. F. Feigl, Spot Tests in Organic Analysis. 5th rev. Edit., Elsevier Publishing Company: Amsterdam London, New York, Princeton, 1956, p. 342.

    Google Scholar 

  31. P. Ray, Chem. Rev., 61, 313 (1961).

    Google Scholar 

  32. A.E. Martel and R. Smith, Critical Stability Constant, Plenum Press, New York, 1977, Vol. 3, p. 66.

    Google Scholar 

  33. R.G. Wilkins, Kinetics and Mechanism of Reactions of Transition Metal Complexes, 2nd rev. Edit., VCH, Weinheim, New York, 1991, p. 41.

    Google Scholar 

  34. S. Mukhopadhyay and R. Banerjee, J. Chem. Soc., Dalton Trans., 1349 (1994).

  35. P. Bandyopadhyay and S. Mukhopadhyay, Polyhedron, 21, 1893 (2002).

    Google Scholar 

  36. S.K. Ghosh, R.N. Bose and E.S. Gould, Inorg. Chem., 26, 2688 (1987).

    Google Scholar 

  37. K.D. Asmus, M. Bonifacic, P. Toffel, P. O'Neill, D.S. Frohlinde and S. Steenken, J. Chem. Soc., Faraday Trans., 1, 74, 1820 (1978).

    Google Scholar 

  38. K. Lemma, A.M. Sargeson and L.I. Elding, J. Chem. Soc., Dalton Trans., 1167 (2000).

  39. T. Shi, J. Berglund and L.I. Elding, Inorg. Chem., 35, 3498 (1996).

    Google Scholar 

  40. J. Berglund and L.I. Eliding, Inorg. Chem., 34, 513 (1995).

    Google Scholar 

  41. R. Banerjee, Proc. Indian Acad. Sci. (Chem. Sci.), 106, 655 (1994).

    Google Scholar 

  42. (a) D.H. Evans, K.M. O'Connell, R.A. Petersen and M.J. Kelly, J. Chem. Ed., 60, 290 (1983). (b) R.C. Holz, T.E. Elgren, L.L. Pearce, J.H. Zhang, C.J. O'Connor and L. Que, Jr. Inorg. Chem., 32, 5844 (1993).

  43. S.P. Ghosh, M.C. Ghosh and E.S. Gould, Inorg. Chim. Acta, 225, 83 (1994).

    Google Scholar 

  44. R.D. Cannon, Electron Transfer Reactions, Part 3, Butterworths, London, 1980, p. 205.

    Google Scholar 

  45. N.R. Kunchur, Nature (London), 217, 539 (1968).

    Google Scholar 

  46. M.L. Simms, J.L. Atwood and D.A. Zatko, J. Chem. Soc., Chem. Commun., 46 (1973).

  47. L. Coghi and G. Pelizzi, Acta Crystallogr., Sec. B, 31, 131 (1975).

    Google Scholar 

  48. R. Banerjee, A. Das and S. Dasgupta, J. Chem. Soc., Dalton Trans., 1207 (1990).

  49. J. Shorter and C.N. Hinshelwood, J. Chem. Soc., 3276 (1950).

  50. J. Shorter, J. Chem. Soc., 3425 (1950).

  51. R. Banerjee, A. Das and S. Dasgupta, J. Chem. Soc., Dalton Trans., 2271 (1990).

  52. B. Das Sarma, J. Indian Chem. Soc., 29, 217 (1952).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, A., Mukhopadhyay, S. Kinetics of oxidation of pyruvic acid by [ethylenebis(biguanide)]silver(III) in aqueous acidic media. Transition Metal Chemistry 29, 797–803 (2004). https://doi.org/10.1007/s11243-004-1015-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-004-1015-9

Keywords

Navigation