Skip to main content
Log in

Water Upconing in Underground Hydrogen Storage: Sensitivity Analysis to Inform Design of Withdrawal

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

A Correction to this article was published on 08 March 2024

This article has been updated

Abstract

The gas–water interface in Underground Hydrogen Storage (UHS) reservoirs creates the possibility that water will upcone to the well during hydrogen (H2) withdrawal with detrimental impacts. We study the upconing of water to a hydrogen injection/withdrawal (I/W) well using both an analytical solution and numerical simulation. We carried out sensitivity analyses of the engineered properties (e.g., distance of well bottom to gas–water interface, withdrawal rate) and the intrinsic properties (e.g., reservoir permeability, porosity) of an idealized UHS system. Horizontal permeability is the main parameter controlling the height of upconing. Daily I/W cycles to some degree mitigate upconing because injection pushes down the gas–water interface. Sampling-based global sensitivity analyses show clearly that reservoirs with large horizontal permeability are preferred for avoiding upconing. Minimizing withdrawal rate and maximizing either the distance from well to gas–water interface or the length of the perforated well interval are important engineering controls to minimize upconing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Change history

Abbreviations

d :

Distance from original gas–water interface to well bottom (m)

D :

Molecular diffusivity (m2 s1)

k H , k x , k r :

Permeability in the horizontal direction (m2)

k V , k Z :

Permeability in the vertical direction (m2)

K H :

Hydraulic conductivity in the horizontal direction (m s1)

K V :

Hydraulic conductivity in the vertical direction (m s1)

P :

Pressure (Pa, bar)

Q :

Volumetric I/W rate (m3 s1)

Q m :

Mass-based I/W rate (kg s1)

R :

Radial coordinate (m)

R’ :

Intermediate term in DB model (–)

S :

Phase saturation (Sl = aqueous, Sg = gas) (–)

T :

Temperature (°C)

X :

Mass fraction (–)

Z :

Vertical coordinate (m)

ϕ :

Porosity (–)

\(\gamma\) :

Gas density in DB model (kg m3)

\(\gamma^{\prime }\) :

Intermediate term in DB model (m s1)

References

  • Arthur, J.D., Alleman, N., Andersen, K.: A historical look at underground natural gas storage in America. Oil-Ind. Hist. 17(1), 35–465 (2016)

    Google Scholar 

  • Bell, I.H., Wronski, J., Quoilin, S., Lemort, V.: Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp. Ind. Eng. Chem. Res. 53(6), 2498–2508 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blain, L.: Record-breaking hydrogen electrolyzer claims 95% efficiency, NewAtlas (2022). Accessed 30 Apr 2023. https://newatlas.com/energy/hysata-efficient-hydrogen-electrolysis/

  • Bo, Z., Boon, M., Hajibeygi, H., Hurter, S.: Impact of experimentally measured relative permeability hysteresis on reservoir-scale performance of underground hydrogen storage (UHS). Int. J. Hydrog. Energy 48(36), 13527–13542 (2023)

    Article  CAS  Google Scholar 

  • Booze-Allen, Argo add-in for Excel. Accessed 30 Apr 2023. https://boozallen.github.io/argo/

  • CalISO. Accessed 30 Apr 2023. http://www.caiso.com/informed/Pages/ManagingOversupply.aspx

  • Chandler, R.L., McWhorter, D.B.: Upconing of the salt-water–fresh-water interface beneath a pumping well. Groundwater 13(4), 354–359 (1975)

    Article  Google Scholar 

  • Dagan, G., Bear, J.: Solving the problem of local interface upconing in a coastal aquifer by the method of small perturbations. J. Hydraul. Res. 6(1), 15–44 (1968)

    Article  Google Scholar 

  • Falcone, G., Barbosa Jr, J. R.: State-of-the-art review of liquid loading in gas wells. DGMK/ÖGEW-Frühjahrstagung 2013, Fachbereich Aufsuchung und Gewinnung Celle, 18./19 (2013). Accessed 13 July 2023. https://www.osti.gov/etdeweb/servlets/purl/22124955

  • Finsterle, S.: Practical notes on local data-worth analysis. Water Resour. Res. 51(12), 9904–9924 (2015)

    Article  ADS  Google Scholar 

  • Finsterle, S., Commer, M., Edmiston, J., Jung, Y., Kowalsky, M.B., Pau, G.S.H., Wainwright, H., Zhang, Y.: iTOUGH2: a multiphysics simulation-optimization framework for analyzing subsurface systems. Comput. Geosci. 108, 8–20 (2017). https://doi.org/10.1016/j.cageo.2016.09.005

    Article  CAS  ADS  Google Scholar 

  • Finsterle, S.: Enhancements to the TOUGH2 Simulator Implemented in iTOUGH2 (2022). Report FGC-18-02/LBNL-7016E, Finsterle GeoConsulting, LLC, Kensington

  • Foh, S., Novil, M., Rockar, E., Randolph, P.: Underground hydrogen storage. final report. [salt caverns, excavated caverns, aquifers and depleted fields]; Brookhaven National Lab., Upton (1979)

  • Heinemann, N., Alcalde, J., Miocic, J.M., Hangx, S.J., Kallmeyer, J., Ostertag-Henning, C., Hassanpouryouzband, A., Thaysen, E.M., Strobel, G.J., Schmidt-Hattenberger, C., Edlmann, K.: Enabling large-scale hydrogen storage in porous media–the scientific challenges. Energy Environ. Sci. 14(2), 853–864 (2021)

    Article  CAS  Google Scholar 

  • Jangda, Z., Menke, H., Busch, A., Geiger, S., Bultreys, T., Lewis, H., Singh, K.: Pore-scale visualization of hydrogen storage in a sandstone at subsurface pressure and temperature conditions: trapping, dissolution and wettability. J. Colloid Interface Sci. 629, 316–325 (2023)

    Article  CAS  PubMed  Google Scholar 

  • Johns, R.T., Lake, L.W., Ansari, R.Z., Delliste, A.M.: Prediction of capillary fluid interfaces during gas or water coning in vertical wells. SPE J. 10(04), 440–448 (2005)

    Article  Google Scholar 

  • Katz, D.L., Tek, M.R.: Overview on underground storage of natural gas. J. Petrol. Technol. 33(06), 943–951 (1981)

    Article  Google Scholar 

  • Knepper, G.A.: Underground storage operations. J. Petrol. Technol. 49(10), 1112–1114 (1997)

    Article  Google Scholar 

  • Lemmon, E.W., Bell, I.H., Huber, M.L., McLinden, M.O.: NIST standard reference database 23: Reference fluid thermodynamic and transport properties-REFPROP, Version 10.0. National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg (2018). Doi: https://doi.org/10.18434/T4/1502528

  • Luboń, K., Tarkowski, R.: Numerical simulation of hydrogen injection and withdrawal to and from a deep aquifer in NW Poland. Int. J. Hydrog. Energy 45(3), 2068–2083 (2020)

    Article  Google Scholar 

  • Luckner, L., Van Genuchten, M.T., Nielsen, D.R.: A consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface. Water Resour. Res. 25(10), 2187–2193 (1989)

    Article  CAS  ADS  Google Scholar 

  • Lysyy, M., Fernø, M., Ersland, G.: Seasonal hydrogen storage in a depleted oil and gas field. Int. J. Hydrog. Energy 46(49), 25160–25174 (2021)

    Article  CAS  Google Scholar 

  • Lysyy, M., Føyen, T., Johannesen, E.B., Fernø, M., Ersland, G.: Hydrogen relative permeability hysteresis in underground storage. Geophys. Res. Lett. 49(17), e2022GL100364 (2022)

    Article  ADS  Google Scholar 

  • Mouli-Castillo, J., Heinemann, N., Edlmann, K.: Mapping geological hydrogen storage capacity and regional heating demands: an applied UK case study. Appl. Energy 283, 116348 (2021)

    Article  CAS  Google Scholar 

  • Muhammed, N.S., Haq, B., Al Shehri, D., Al-Ahmed, A., Rahman, M.M., Zaman, E.: A review on underground hydrogen storage: Insight into geological sites, influencing factors and future outlook. Energy Rep. 8, 461–499 (2022)

    Article  Google Scholar 

  • Muskat, M., Wyckoff, R.: An approximate theory of water-coning in oil production. AIME Trans. Petr. Dev. (1935). https://doi.org/10.2118/935144-G

    Article  Google Scholar 

  • Nordbotten, J.M., Celia, M.A.: An improved analytical solution for interface upconing around a well. Water Resour. Res. 42(8), 55 (2006). https://doi.org/10.1029/2005WR004738

    Article  Google Scholar 

  • Oldenburg, C.M., Finsterle, S.: iTOUGH2-EOS7CH: simulation capability for hydrogen storage in porous media reservoirs, Finsterle GeoConsulting Report FGC-23-01 (2023).

  • Oldenburg, C.M., Moridis, G.J., Spycher, N., Pruess, K.: (2004) EOS7C Version 1.0: TOUGH2 module for carbon dioxide or nitrogen in natural gas (methane) reservoirs (LBNL-56589). Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley

  • Oldenburg, C.M., Pan, L.: Porous media compressed-air energy storage (PM-CAES): theory and simulation of the coupled wellbore–reservoir system. Transp. Porous Media 97, 201–221 (2013)

    Article  Google Scholar 

  • Pfeiffer, W.T., Bauer, S.: Comparing simulations of hydrogen storage in a sandstone formation using heterogeneous and homogenous flow property models. Pet. Geosci. 25(3), 325–336 (2019)

    Article  CAS  Google Scholar 

  • Plaat, H.: Underground gas storage: why and how. Geol. Soc. Lond. 313(1), 25–37 (2009)

    Article  Google Scholar 

  • Pruess, K., Oldenburg, C., Moridis, G.: TOUGH2 user’s guide, Version 2.1. Lawrence Berkeley Laboratory Report LBNL-43134, Berkeley (2012)

  • Sáinz-García, A., Abarca, E., Rubí, V., Grandia, F.: Assessment of feasible strategies for seasonal underground hydrogen storage in a saline aquifer. Int. J. Hydrog. Energy 42(26), 16657–16666 (2017)

    Article  Google Scholar 

  • Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global sensitivity analysis: the primer. John Wiley and Sons, NewYork (2008)

    Google Scholar 

  • Sun, D., Wong, P.: Seawater upconing under a pumping horizontal well in a confined coastal aquifer. Int. J. Environ. Sci. Nat. Resour. 2(1), 20–29 (2017)

    Google Scholar 

  • Tarkowski, R., Czapowski, G.: Salt domes in Poland-Potential sites for hydrogen storage in caverns. Int. J. Hydrog. Energy 43(46), 21414–21427 (2018)

    Article  CAS  Google Scholar 

  • Thiyagarajan, S.R., Emadi, H., Hussain, A., Patange, P., Watson, M.: A comprehensive review of the mechanisms and efficiency of underground hydrogen storage. J. Energy Storage 51, 104490 (2022)

    Article  Google Scholar 

  • Wainwright, H., Finsterle, S., Jung, Y., Zhou, Q., Birkholzer, J.T.: Making sense of global sensitivity analyses. Comput. Geosci. 65, 84–94 (2014). https://doi.org/10.1016/j.cageo.2013.06.006

    Article  ADS  Google Scholar 

  • Wallace, R.L., Cai, Z., Zhang, H., Zhang, K., Guo, C.: Utility-scale subsurface hydrogen storage: UK perspectives and technology. Int. J. Hydrog. Energy 46(49), 25137–25159 (2021)

    Article  CAS  Google Scholar 

  • Wiles, L.E., McCann, R.A.: Water coning in porous media reservoirs for compressed air energy storage (No. PNL-3470). Battelle Pacific Northwest Labs., Richland (1981).

  • Zhao, Y., McDonell, V., Samuelsen, S.: Influence of hydrogen addition to pipeline natural gas on the combustion performance of a cooktop burner. Int. J. Hydrog. Energy 44(23), 12239–12253 (2019)

    Article  CAS  Google Scholar 

  • Zivar, D., Kumar, S., Foroozesh, J.: Underground hydrogen storage: a comprehensive review. Int. J. Hydrog. Energy 46(45), 23436–23462 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from EPRI to Finsterle GeoConsulting LLC.

Funding

This work was supported by a grant from EPRI to Finsterle GeoConsulting, LLC.

Author information

Authors and Affiliations

Authors

Contributions

Oldenburg, Finsterle, and Trautz contributed to problem conceptualization. Oldenburg and Finsterle developed the methodology and carried out the formal analysis and simulations. Oldenburg and Finsterle wrote the original draft. Trautz was project administrator, and carried out review and editing.

Corresponding author

Correspondence to Curtis M. Oldenburg.

Ethics declarations

Competing interests

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Curtis M. Oldenburg and Stefan Finsterle report financial support was provided by Electrical Power Research Institute (EPRI), Palo Alto, California, USA.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oldenburg, C.M., Finsterle, S. & Trautz, R.C. Water Upconing in Underground Hydrogen Storage: Sensitivity Analysis to Inform Design of Withdrawal. Transp Porous Med 151, 55–84 (2024). https://doi.org/10.1007/s11242-023-02033-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-023-02033-0

Keywords

Navigation