Skip to main content
Log in

Parametric Sensitivity to Capillary Entry Pressure in Two-Phase Water–Gas Flow Models: Deep Geologic Disposal of Radioactive Waste

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In a deep geological repository for the long-term containment of radioactive waste, the engineered barriers and host clay rock inhibit the migration of gases, due to their low permeability and high gas entry pressure. Some experiments in the literature have focused on the measurement of gas entry pressure \((P_{\text {g,e}}\), but there is a lack of 2-phase flow (water–gas) modeling studies that include entry pressure effects in such porous media. In the present work, the modified Van Genuchten–Mualem model (Vogel et al. 2000) is extended to two-phase flow, incorporating the capillary entry pressure parameter \((P_{\text {c,e}})\), and a new data analysis approach is developed in order to characterize the water–gas constitutive relations (saturation curve, water permeability curve, gas permeability curve). This constitutive model is then implemented in the iTOUGH2 code (Wainwright and Finsterle 2016 in Global sensitivity and data-worth analyses in iTOUGH2: User’s guide) with a change of primary variables to be described below (capillary pressure is set as primary state variable instead of gas saturation). After regression tests for verifying the change of primary variables in iTOUGH2, two problems were modeled: first, numerical flow experiments were performed in a clay soil (code-to-code benchmark tests, and comparisons focused on entry pressure effects); secondly, water–gas migration was modeled based on an in situ gas injection experiment (PGZ1) performed in the French URL (Underground Research Laboratory) of Bure. Sensitivity analyses show that gas entry pressure is an important controlling factor which should not be neglected in simulations of gas migration in clayey materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ababou, R.: Approaches to large scale unsaturated flow in heterogeneous, stratified, and fractured geologic media. Technical report, U.S. Nuclear Regulatory Commission (1991) http://www.osti.gov/bridge/servlets/purl/138205-ggEESe/webviewable/138205.pdf

  • Ababou, R.: Capillary Flows in Heterogeneous and Random Porous Media 1, vol. 1. ISTE Ltd and John Wiley & Sons Inc, Hoboken (2018)

    Book  Google Scholar 

  • Ababou, R., Bagtzoglou, A.C.: Bigflow: A numerical code for simulating flow in variably saturated, heterogeneous geologic media (theory and user’s manual, version 1.1). Technical report, U.S. Nuclear Regulatory Commission (1993)

  • Ababou, R., Canamon, I., Poutrel, A.: Macro-permeability distribution and anisotropy in a 3D fissured and fractured clay rock: Excavation damaged zone around a cylindrical drift in Callovo–Oxfordian Argilite (bure). Physics and Chemistry of the Earth (Special Issue: Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, 4th International Meeting Clays, Nantes, 2010) (2011)

  • ANDRA: Dossier 2005 argile. référentiel du comportement des radionucléides et des toxiques chimiques d’un stockage dans le callovo-oxfordien jusqu’à l’homme, site de meuse haute-marne, andra, dossier havl-argile 2005, vol.4, c.rp.astr.04.0032. Tech. rep., ANDRA, Agence Nationale pour la Gestion des Déchets Radioactifs, Chatenay Malabry 92, France (2005)

  • ANDRA: Mesure de la pression de percée de gaz et importance de la cinétique de montée en pression. (document technique externe andra, cg.rp.amfs.12.0030). Technical report, Agence Nationale pour la Gestion des Déchets Radioactifs (ANDRA), France (2012 (July))

  • Angeli, M., Soldal, M., Skurtveit, E., Aker, E.: Experimental percolation of supercritical CO2 through a caprock. Energy Procedia 1(1), 3351–3358 (2009)

    Article  Google Scholar 

  • Battistelli, A., Swenson, D., Alcott, A.: Improved PetraSim-TOUGH2 capabilities for the simulation of geothermal reservoirs. In: Proceedings of 42nd workshop on geothermal reservoir engineering, Stanford, California (USA) (2017)

  • Boulin, P.F., Angulo-Jaramillo, R., Daian, J.F., Talandier, J., Berne, P.: Experiments to estimate gas intrusion in Callovo–Oxfordian argillites. Phys. Chem. Earth 33, S225–S230 (2008)

    Article  Google Scholar 

  • Boulin, P.F., Bretonnier, P., Vassil, V., Samouillet, A., Fleury, M., Lombard, J.M.: Sealing efficiency of caprocks: experimental investigation of entry pressure measurement methods. Mar. Petrol. Geol. 48, 20–30 (2013)

    Article  Google Scholar 

  • Brooks, R., Corey, T.: Hydraulic Properties of Porous Media. Hydrology Papers. Colorado State University, Fort Collins, Fort Collins (1964)

    Google Scholar 

  • Carsel, R., Parrish, R.: Developing joint probability distributions of soil water retention characteristics. Water Resour. Res. 24, 755–769 (1988)

    Article  Google Scholar 

  • Croisé, J., Vinsot, A., Noy, D.: Osmotic flow and over pressures within the Callovo-Oxfordian argillite in the eastern part of the Paris Basin. In: Clays in Natural and Engineered barriers for Radioactive Waste Confinement. International Colloquy, 14–18 March 2005, Tours, France. Tours, France (2005)

  • Cuss, R., Harrington, J., Giot, R., Auvray, C.: Experimental observations of mechanical dilation at the onset of gas flow in Callovo-Oxfordian claystone. Geol. Soc. Spec. Publ. 400(1), 507–519 (2014). https://doi.org/10.1144/SP400.26. (’sp.lyellcollection.org/content/400/1/507’)

    Article  Google Scholar 

  • Davy, C.A., Skoczylas, F., Barnichon, J.D., Lebon, P.: Permeability of macro-cracked argillite under confinement: gas and water testing. Phys. Chem. Earth Parts A/B/C 32(8–14), 667–680 (2007)

    Article  Google Scholar 

  • De La Vaissière, R.: Interpretation of in-situ gas experiment pgz1. Technical report (2011)

  • Deb, K., Pratap A., Agarwal S., Meyarivan T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

  • De La Vaissière, R., Gerard, P., Radu, J.P., Charlier, R., Collin, F., Granet, S., Talandier, J., Piedevache, M., Helmlinger, B.: Gas injection test in the Callovo-Oxfordian claystone: data analysis and numerical modelling. Geol. Soc. Spec. Publ. 400(1), 427–441 (2014)

    Article  Google Scholar 

  • De La Vaissière, R., Talandier, J., Armand, G., Vu, M.N., Cornet, F.H., et al.: From two-phase flow to gas fracturing into callovo-oxfordian claystone. In: 53rd US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association (2019)

  • Finsterle, S.: iTOUGH2 user’s guide (lbnl-40040, earth sciences division). Technical report, University of California, Berkeley, CA 94720, USA (2007)

  • Finsterle, S.: Enhancements to the TOUGH2 simulator integrated in iTOUGH2. Technical report (2015)

  • Finsterle, S.: Enhancements to the TOUGH2 simulator integrated in iTOUGH2 (report lbnl-7016e). Technical report, University of California, Berkeley, CA 94720 (2016)

  • Gérard, P.: Impact des transferts de gaz sur le comportement poro-mécanique des matériaux argileux. Ph.D. thesis, Université de Liège, Belgique (2011)

  • Hadka, D.: MOEA framework: a free and open source java framework for multiobjective optimization (2012). https://scholar.google.com/scholar?hl=fr&as_sdt=0%2C5&q=+free+and+open+source+java+framework+for+multiobjective+optimization&btnG=#d=gs_cit&t=1660769063632&u=%2Fscholar%3Fq%3Dinfo%3AKEzj4x0b874J%3A

  • Harrington, J.F., Cuss, R.J., Talandier, J.: Gas transport properties through intact and fractured Callovo-Oxfordian mudstones. Geol. Soc. Lond. Spec. Publ. 454(1), 131–154 (2017)

    Article  Google Scholar 

  • Haverkamp, R., Vauclin, M., Touma, J., Wierenga, P.J., Vachaud, G.: A comparison of numerical simulation models for one-dimensional infiltration. Soil Sci. Soc. Am. J. 41(2), 285–294 (1977)

    Article  Google Scholar 

  • Ippisch, O., Vogel, H.J., Bastian, P.: Validity limits for the van Genuchten–Mualem model and implications for parameter estimation and numerical simulation. Adv. Water Resour. 29(12), 1780–1789 (2006)

    Article  Google Scholar 

  • Kutscher, K., Geier, M., Krafczyk, M.: Multiscale simulation of turbulent flow interacting with porous media based on a massively parallel implementation of the cumulant lattice Boltzmann method. Comput. Fluids (2019). https://doi.org/10.1016/j.compfluid.2018.02.009

    Article  Google Scholar 

  • Luckner, L., Van Genuchten, M.T., Nielsen, D.R.: A consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface. Water Resour. Res. 25(10), 2187–2193 (1989)

    Article  Google Scholar 

  • Marschall, P., Horseman, S., Gimmi, T.: Characterisation of gas transport properties of the Opalinus clay, a potential host rock formation for radioactive waste disposal. Oil Gas Sci. Technol. 60(1), 121–139 (2005)

    Article  Google Scholar 

  • MJahad, S.: Impact de la fissuration sur les propriétés de rétention d ‘eau et de transport de gaz des géomatériaux: Application au stockage géologique des déchets radioactifs. Ph.D. thesis (2012)

  • MJahad, S., Davy, C.A., Skoczylas, F., Talandier, J.: Characterization of transport and water retention properties of damaged Callovo-Oxfordian claystone. Geol. Soc. Lond. Spec. Public. 443, 159–177 (2017). https://doi.org/10.1144/SP443.23

    Article  Google Scholar 

  • Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resourc. Res. 12(3), 513–522 (1976)

    Article  Google Scholar 

  • Parker, J., Lenhard, R., Kuppusamy, T.: A parametric model for constitutive properties governing multiphase flow in porous media. Water Resour. Res. 23(4), 618–624 (1987)

    Article  Google Scholar 

  • Philip, J.R.: The theory of infiltration: 1. The infiltration equation and its solution. Soil Sci. 83(5), 345–358 (1957)

    Article  Google Scholar 

  • Pruess, K., Oldenburg, C.M., Moridis, G.J.: Tough2 user’s guide version 2. Technical report, Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (1999)

  • Saâdi, Z., Dymitrowska, M., Deleruyelle, F., Marsal, F.: An evaluation model of the impact of hydrogen ‘piston effect’ on water displacement in a deep geological disposal of radioactive waste. Environ. Earth Sci. 79(18), 434 (2020). https://doi.org/10.1007/s12665-020-09166-1. (’hal.archives-ouvertes.fr/hal-03147396’)

    Article  Google Scholar 

  • Sentís, M.L.: Two-phase flow modeling with TOUGH2-MP of a deep geological repository within the first benchmark of the forge project. Nuclear Technol. 187(2), 117–130 (2014)

    Article  Google Scholar 

  • Song, Y., Davy, C.A., Bertier, P., Troadec, D.: Understanding fluid transport through claystones from their 3d nanoscopic pore network. Microporous Mesoporous Mater. 228, 64–85 (2016)

    Article  Google Scholar 

  • Song, Y., Davy, C., Troadec, D., Blanchenet, A.M., Skoczylas, F., Talandier, J., Robinet, J.: Multi-scale pore structure of cox claystone: towards the prediction of fluid transport. Mar. Petrol. Geol. 65, 63–82 (2015)

    Article  Google Scholar 

  • Stephens, D.B., Rehfeldt, K.R.: Evaluation of closed-form analytical models to calculate conductivity in a fine sand. Soil Sci. Soc. Am. J. 49(1), 12–19 (1985)

    Article  Google Scholar 

  • Twarakavi, N.K., Saito, H., Šimunek, J., van Genuchten, M.T.: A new approach to estimate soil hydraulic parameters using only soil water retention data. Soil Sci. Soc. Am. J. 72(2), 471–479 (2008)

    Article  Google Scholar 

  • Van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)

    Article  Google Scholar 

  • Van Genuchten, M.T., van, Leij, F.J., Yates, S.R., et al.: The RETC code for quantifying the hydraulic functions of unsaturated soils. (1991). https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.466.6966&rep=rep1&type=pdf

  • Vinsot, A., Mettler, S., Wechner, S.: In situ characterization of the Callovo-Oxfordian pore water composition. Phys. Chem. Earth Part A/B/C 33(1), S75–S86 (2008). https://doi.org/10.1016/j.pce.2008.10.048

    Article  Google Scholar 

  • Vogel, T., Van Genuchten, M.T., Cislerova, M.: Effect of the shape of the soil hydraulic functions near saturation on variably-saturated flow predictions. Adv. Water Resour. 24(2), 133–144 (2000)

    Article  Google Scholar 

  • Wainwright, H.M., Finsterle, S.: Global sensitivity and data-worth analyses in iTOUGH2: User’s guide. Technical report, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) (2016)

  • Wang, H., Xu, W., Cai, M., Zuo, J.: An experimental study on the slippage effect of gas flow in a compact rock. Transp. Porous Media 112, 117–137 (2016)

    Article  Google Scholar 

  • Wiseall, A.C., Cuss, R.J., Graham, C.C., Harrington, J.F.: The visualization of flow paths in experimental studies of clay-rich materials. Mineral. Mag. 79(6), 1335–1342 (2015)

    Article  Google Scholar 

  • Yuan, H.: Caractérisation expérimentale de propriétés poromécaniques et de transfert de l’argilite du cox. Ph.D. thesis, Ecole Centrale de Lille, Génie Civil, Laboratoire de Mécanique de Lille, France (2017)

Download references

Acknowledgements

We would like to thank Dr. Stefan Finsterle for providing the iTOUGH2 software and for his valuable comments on a first version of the manuscript. We would also like to acknowledge the valuable comments of the anonymous reviewers.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdellah Amri.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amri, A., Saâdi, Z. & Ababou, R. Parametric Sensitivity to Capillary Entry Pressure in Two-Phase Water–Gas Flow Models: Deep Geologic Disposal of Radioactive Waste. Transp Porous Med 145, 13–43 (2022). https://doi.org/10.1007/s11242-022-01780-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-022-01780-w

Keywords

Navigation